Normality and quotient in crossed modules, 1 cat -groups and internal groupoids within groups with operations Tunçar S¸ahan∗a and Osman Mucuk†b 6 1 aDepartmentofMathematics,AksarayUniversity,Aksaray,TURKEY 0 2 bDepartmentofMathematics,ErciyesUniversity,Kayseri,TURKEY n a J 6 2 Abstract ] T C Inthispaperwedefinethenotionsofnormalsubcrossedmoduleandquotientcrossed . h module within groups with operations; and using the equivalence of crossed modules t a over groups with operations and internal groupoids we prove how normality and quo- m tient concepts are related in these two categories. Further we prove an equivalence of [ crossedmodulesovergroupswithoperationsandcat1-groupswithoperationsforacer- 1 v tainalgebraiccategory;andthenbythisequivalencewedeterminenormalandquotient 5 9 objectsinthecategoryofcat1-groupswithoperations. Finallywecharacterizethecover- 0 ingsofcat1-groupswithoperations. 7 0 . 1 KeyWords: Groupwithoperations,quotientcrossedmodule,internalgroupoid. 0 Classification: 20L05,57M10,22AXX,22A22 6 1 : v i X 1 Introduction r a Crossed modules as defined by Whitehead [30, 31] have been widely used in homotopy theory [7], the theory of group representation (see [9] for a survey), in algebraic K-theory [20], and homological algebra [19, 22]. Crossed modules can be viewed as 2-dimensional groups[5]. ∗E-mail: [email protected] †E-mail: [email protected] 1 The notions of subcrossed module and normal subcrossed module were defined in [28]. In[11]BrownandSpencerprovedthatthecategoryofinternalgroupoidswithinthegroups, which are also called in [11] under the name of G-groupoids and alternative names, quite generally used are group-groupoid [10] or 2-group (see for example [3]) is equivalent to the categoryofcrossedmodulesofgroups. Usingtheequivalencein[11],recentlyin[24]normal andquotientobjectsinthecategoryofgroup-groupoidshavebeenobtained. In [21] Loday defined an algebraic object called cat1-group as a group G with two endo- morphismss,tofGsuchthatst = t,ts = sand[Kers,Kert] = 0,where[Kers,Kert]represents the commutator subgroup of G; and proved that the categories of cat1-groups and crossed modulesareequivalent. In [29] Porter proved a similar result to one in [11] holds for certain algebraic categories, introduced by Orzech [27], which definition was adapted by him and called category of groupswithoperations. ApplyingPorter’sresult,thestudyofinternalcategorytheorywas continued in the works of Datuashvili [15] and [16]. Moreover, she developed cohomology theory of internal categories, equivalently, crossed modules, in categories of groups with operations [13] and [14]. The equivalences of the categories in [11] and [29] enable us to generalize some results on group-groupoids which are internal categories within groups to the more general internal groupoids for a certain algebraic category C (see for example [2], [23],[25]and[26]). In this paper for an algebraic category C we define normal subcrossed module and quo- tient crossed module for groups with operations; and then obtain normal subgroupoid and quotientgroupoidininternalgroupoidscorrespondingrespectivelytoanormalsubcrossed module and a quotient crossed module of groups with operations. Further we prove an equivalence of crossed modules over groups with operations and cat1-groups with opera- tions for a certain algebraic category. This equivalence enables us to determine normal and quotientobjects;andcoveringsinthecategoryofcat1-groupswithoperations. MainresultsofthispaperconstitutesomepartsofthePhDthesisoffirstauthoratErciyes Universityin2014. 2 Preliminaries Let G be a groupoid. We write G for the set of objects of G and write G for the set 0 1 of morphisms. We also identify G with the set of identities of G and so an element of G 0 0 may be written as x or 1 as convenient. We write d ,d : G → G for the source and target x 0 1 1 0 maps, and, as usual, write G(x,y) for d−1(x) ∩ d−1(y), for x,y ∈ G . The composition h ◦ g 0 1 0 of two elements of G is defined if and only if d (h) = d (g), and so the map (h,g) (cid:55)→ h ◦ g 0 1 2 is defined on the pullback G × G of d and d . The inverse of g ∈ G(x,y) is denoted by 1d0 d1 1 0 1 g−1 ∈ G(y,x). If x ∈ G , we write St x for d−1(x) and call the star of G at x. Similarly we write Cost x 0 G 0 G for d−1(x) and call costar of G at x. The set of all morphisms from x to x is a group, called 1 objectgroupatx,anddenotedbyG(x). A groupoid G is totally intransitive if G(x,y) = ∅ for all x,y ∈ G such that x (cid:54)= y. Such 0 a groupoid is determined entirely by the family {G(x) | x ∈ G } of groups. This totally 0 intransitive groupoid is sometimes called totally disconnected or bundle of groups (Brown [4, pp.218]). LetGbeagroupoid. AsubgroupoidH ofGisapairofsubsetsH ⊆ G andH ⊆ G such 1 1 0 0 that d (H ) ⊆ H , d (H ) ⊆ H , 1 ∈ H for each x ∈ H and H is closed under the partial 0 1 0 1 1 0 x 1 0 1 multiplicationandtheinversioninG. AsubgroupoidH ofGiscalledwideifH = G . 0 0 Definition2.1 LetGbeagroupoid. AsubgroupoidN ofGiscallednormalifitiswideinG andg ◦N(x) = N(y)◦g forobjectsx,y ∈ G andg ∈ G(x,y). 0 Quotient groupoid is formed as follows (Higgins [17, pp.86] and Brown [4, pp.420]). Let N be a normal subgroupoid of the groupoid G. The components of N define a partition on G and we write [x] for the class containing x. Then N also defines an equivalence relation 0 on G by g ∼ h for a,b ∈ G if and only if g = n ◦ h ◦ m for some m,n ∈ N . A partial 1 1 1 composition [h]◦[g] on the morphisms is defined if and only if there exist g ∈ [g], h ∈ [h] 1 1 suchthath ◦g isdefinedinG andthen[h]◦[g] = [h ◦g ]. Thispartialcompositiondefines 1 1 1 1 1 agroupoidonclasses[x]’sasobjects. Thegroupoiddefinedinthismanneriscalledquotient groupoidanddenotedbyG/N. As it is stated in Brown [4, pp.218], in the case where the normal subgroupoid N is totally intransitive, we have that (G/N) = G and G/N(x,y) consists of all cosets g ◦N(x) 0 0 forx,y ∈ G andg ∈ G(x,y). Thegroupoidcompositionbecomes 0 (h◦N(y))◦(g ◦N(x)) = (h◦g)◦N(x). forg ∈ G(x,y)andh ∈ G(y,z). WerecallthatacrossedmoduleofgroupsoriginallydefinedbyWhitehead[30,31],con- sists of two groups A and B, an action of B on A denoted by b·a for a ∈ A and b ∈ B; and a morphism α: A → B of groups satisfying the following conditions for all a,a ∈ A and 1 b ∈ B (i) α(b·a) = b+α(a)−b, (ii) α(a)·a = a+a −a. 1 1 3 We will denote such a crossed module by (A,B,α). Let (A,B,α) and (A(cid:48),B(cid:48),α(cid:48)) be two crossedmodules. Amorphism(f ,f )from(A,B,α)to(A(cid:48),B(cid:48),α(cid:48))isapairofmorphismsof 1 2 groupsf : A → A(cid:48) andf : B → B(cid:48) suchthatf α = α(cid:48)f andf (b·a) = f (b)·f (a)fora ∈ A 1 2 2 1 1 2 1 andb ∈ B. It was proved by Brown and Spencer in [11, Theorem 1] that the category XMod(Grp) of crossedmodulesovergroupsisequivalenttothecategoryGrpGpdofgroup-groupoids. 3 Normal and quotient crossed modules in groups with op- erations The idea of the definition of categories of groups with operations comes from Higgins [18] and Orzech [27]; and the definition below is from Porter [29] and Datuashvili [12, pp.21],whichisadaptedfromOrzech[27]. Definition3.1 From now on C will be a category of groups with a set of operations Ω and with a set E of identities such that E includes the group laws, and the following conditions hold: IfΩ isthesetofi-aryoperationsinΩ,then i (a)Ω = Ω ∪Ω ∪Ω ; 0 1 2 (b) The group operations written additively 0,− and + are respectively the elements of Ω ,Ω andΩ . LetΩ(cid:48) = Ω \{+},Ω(cid:48) = Ω \{−}andassumethatif(cid:63) ∈ Ω(cid:48),then(cid:63)◦ definedby 0 1 2 2 2 1 1 2 a(cid:63)◦ b = b(cid:63)aisalsoinΩ(cid:48). AlsoassumethatΩ = {0}; 2 0 (c)Foreach(cid:63) ∈ Ω(cid:48),Eincludestheidentitya(cid:63)(b+c) = a(cid:63)b+a(cid:63)c; 2 (d) For each ω ∈ Ω(cid:48) and (cid:63) ∈ Ω(cid:48), E includes the identities ω(a + b) = ω(a) + ω(b) and 1 2 ω(a)(cid:63)b = ω(a(cid:63)b). Acategorysatisfyingtheconditions(a)-(d)iscalledacategoryofgroupswithoperations. Remark3.2 The set Ω contains exactly one element, the group identity; hence for instance 0 thecategoryofassociativeringswithunitisnotacategoryofgroupswithoperations. Example3.3 Thecategoriesofgroups,ringsgenerallywithoutidentity,R-modules,associa- tive, associative commutative, Lie, Leibniz, alternative algebras are examples of categories ofgroupswithoperations. A morphism between any two objects of C is a group homomorphism, which preserves theoperationsinΩ(cid:48) andΩ(cid:48). 1 2 Thetopologicalversionofthisdefinitioncanbestatedasfollows: 4 Definition3.4 Let X be an object in C. If X has a topology such that all operations in Ω are continuous,thenX iscalledatopologicalgroupwithoperationsinC. In particular if C is the category of groups, then a topological group with operations just becomes a topological group and if C is the category of R-modules, then it becomes a topologicalR-module. WewilldenotethecategoryoftopologicalgroupswithoperationsbyTopC. FortheobjectsAandB ofC,thedirectproductA×B withtheusualoperationsbecomes agroupwithoperations. HencethecategoryChasfiniteproducts. ThesubobjectinthecategoryCcanbedefinedasfollows. Definition3.5 Let A be an object in C. A subset B ⊆ A is called a subgroup with operations of Aifthefollowingconditionsaresatisfied: (i) b(cid:63)b ∈ B forb,b ∈ B and(cid:63) ∈ Ω ; 1 1 2 (ii) ω(b) ∈ B forb ∈ B andω ∈ Ω . 1 ThenormalsubobjectinthecategoryCofgroupswithoperationsisdefinedasfollows. Definition3.6 [27,Definition1.7]LetAbeanobjectinCandN asubgroupwithoperations of A. N is called a normal subgroup with operations or an ideal of A and written N (cid:1) A if the followingconditionsaresatisfied: (i) (N,+)isanormalsubgroupof(A,+); (ii) a(cid:63)n ∈ N fora ∈ A,n ∈ N and(cid:63) ∈ Ω(cid:48). 2 Foramorphismf: A → B inC,Kerf = {a ∈ A|f(a) = 0}isanidealofA. AquotientobjectinCisconstructedasfollows: LetAbeanobjectinCandN anidealof A. ThentherelationonAdefinedby a ∼ a iff a−a ∈ N 1 1 isanequivalencerelation. ThenthequotientsetA/N alongwiththeoperationsdefinedby [a](cid:63)[a ] = [a(cid:63)a ] 1 1 ω([a]) = [ω(a)] for(cid:63) ∈ Ω ,ω ∈ Ω becomesanobjectinCandcalledquotientgroupwithoperationsofAbyN. 2 1 InthefollowingpropositionweprovethatthecategoryChaskernelsincategoricalsense. 5 Proposition3.7 Let A be an object in C. Then N is an ideal of A if and only if it is a kernel of a morphisminC. Proof: WehavealreadyseenthatthekernelofamorphisminCisanidealofthedomain. Conversely if N is an ideal of A, then the quotient A/N becomes an object in C and quotientmorphismp: A → A/N hasN askernel. (cid:4) Let A and B be two groups with operations in C. An extension of A by B is an exact sequence ı p 0 −→ A −→ E −→ B −→ 0 (1) in which p is surjective and ı is the kernel of p. It is split if there is a morphism s: B → E such that ps = ıd . A split extension of B by A is called a B-structure on A. Given such a B B-structure on A we get actions of B on A corresponding to the operations in C. For any b ∈ B,a ∈ Aand(cid:63) ∈ Ω(cid:48) wehavetheactionscalledderivedactionsbyOrzech[27,pp.293] 2 b·a = s(b)+a−s(b) (2) b(cid:63)a = s(b)(cid:63)a. Given a set of actions of B on A (one for each operation in Ω ), let A(cid:111)B be a universal 2 algebrawhoseunderlyingsetisA×B andwhoseoperationsare (a(cid:48),b(cid:48))+(a,b) = (a(cid:48) +b(cid:48) ·a, b(cid:48) +b), (a(cid:48),b(cid:48))(cid:63)(a,b) = (a(cid:48) (cid:63)a+a(cid:48) (cid:63)b+b(cid:48) (cid:63)a, b(cid:48) (cid:63)b). Theorem3.8 [27, Theorem 2.4] A set of actions of B on A is a set of derived actions if and only if A(cid:111)B isanobjectofC. We recall that for groups with operations A and B, in [13, Proposition 1.1] all necessary andsufficientconditionsfortheactionsofB onAtobederivedactionsaredetermined. Lemma3.9 LetA,B,S andT beobjectsinC. SupposethatwehaveasetofderivedactionsofB on AandasetofderivedactionsofT onS. IfS(cid:111)T isanidealofA(cid:111)B thenthefollowingsaresatisfied. (a) S andT areidealsofAandB,respectively, (b) b·s ∈ S forallb ∈ B,s ∈ S, (c) (t·a)−a ∈ S forallt ∈ T,a ∈ A, (d) b(cid:63)s ∈ S forallb ∈ B,s ∈ S, 6 (e) t(cid:63)a ∈ S forallt ∈ T,a ∈ A. Proof: InthefollowingproofsweassumethatS (cid:111)T isanidealofA(cid:111)B and(cid:63) ∈ Ω(cid:48). 2 (a) For(s,0) ∈ S (cid:111)T and(a,0) ∈ A(cid:111)B,wehave (a,0)+(s,0)−(a,0) = (a+s−a,0) ∈ S (cid:111)T and (a,0)(cid:63)(s,0) = (a(cid:63)s,0) ∈ S (cid:111)T. Hencea+s−a ∈ S andS isanidealofA. Similarlyif(0,t) ∈ S(cid:111)T and(0,b) ∈ A(cid:111)B, then (0,b)+(0,t)−(0,b) = (0,b+t−b) ∈ S (cid:111)T and (0,b)(cid:63)(0,t) = (0,b(cid:63)t) ∈ S (cid:111)T. HenceT isanidealofB. (b) If(s,0) ∈ S (cid:111)T and(0,b) ∈ A(cid:111)B,then (0,b)+(s,0)−(0,b) = (b·s,0) ∈ S (cid:111)T andhenceb·s ∈ S. (c) For(0,−t) ∈ S (cid:111)T and(t·a,0) ∈ A(cid:111)B,itimpliesthat (t·a,0)+(0,−t)−(t·a,0) = ((t·a)−a,−t) ∈ S (cid:111)T andso(t·a)−a ∈ S. (d) For(s,0) ∈ S (cid:111)T and(0,b) ∈ A(cid:111)B,wehave (0,b)(cid:63)(s,0) = (b(cid:63)s,0) ∈ S (cid:111)T andthereforeb(cid:63)s ∈ S. (e) If(0,t) ∈ S (cid:111)T and(a,0) ∈ A(cid:111)B,then (0,t)(cid:63)(a,0) = (t(cid:63)a,0) ∈ S (cid:111)T. andt(cid:63)a ∈ S. 7 (cid:4) LetE beaB-structureonAandletF beaT-structureonS asbelow (cid:117)(cid:117) s E : 0 (cid:47)(cid:47)A ι (cid:47)(cid:47)E (cid:47)(cid:47)B (cid:47)(cid:47)0 p (cid:117)(cid:117) s(cid:48) F : 0 (cid:47)(cid:47)S ι(cid:48) (cid:47)(cid:47)F (cid:47)(cid:47)T (cid:47)(cid:47)0. p(cid:48) IfF isanidealofE thenF isanormalsubstructureofE. Thenwecanconstructthequotient splitextensionasfollows. (cid:114)(cid:114) s∗ E/F : 0 (cid:47)(cid:47)A/S ι∗ (cid:47)(cid:47)E/F (cid:47)(cid:47)B/T (cid:47)(cid:47)0 p∗ Thatis,E/F isaB/T-structureonA/S. Definition3.10 [29]AcrossedmoduleinCisatriple(A,B,α),whereAandBaretheobjects ofC,B actsonA,i.e.,wehaveaderivedactioninC,andα: A → B isamorphisminCwith theconditions: CM1. α(b·a) = b+α(a)−b; CM2. α(a)·a(cid:48) = a+a(cid:48) −a; CM3. α(a)(cid:63)a(cid:48) = a(cid:63)a(cid:48); CM4. α(b(cid:63)a) = b(cid:63)α(a),α(a(cid:63)b) = α(a)(cid:63)b foranyb ∈ B,a,a(cid:48) ∈ A,and(cid:63) ∈ Ω(cid:48). 2 A morphism (A,B,α) → (A(cid:48),B(cid:48),α(cid:48)) between two crossed modules is a pair f: A → A(cid:48) andg: B → B(cid:48) ofthemorphismsinCsuchthat (i) gα(a) = α(cid:48)f(a), (ii) f(b·a) = g(b)·f(a), (iii) f(b(cid:63)a) = g(b)(cid:63)f(a) foranyb ∈ B,a ∈ Aand(cid:63) ∈ Ω(cid:48). 2 Definition3.11 We call a crossed module (S,T,σ) in C as a subcrossed module of a crossed module(A,B,α)inCif 8 SCM1. S isasubobjectofA;andT isasubobjectofB; SCM2. σ istherestrictionofα toS; SCM3. theactionofT onS isinducedbytheactionofB onA. Definition3.12 A subcrossed module (S,T,σ) of (A,B,α) in the sense of Definition 3.11 is callednormalif NCM1. T isanidealofB, NCM2. b·s ∈ S forallb ∈ B,s ∈ S, NCM3. (t·a)−a ∈ S forallt ∈ T,a ∈ A, NCM4. b(cid:63)s ∈ S forallb ∈ B,s ∈ S, NCM5. t(cid:63)a ∈ S forallt ∈ T,a ∈ A. Remark3.13 Here we note that if (S,T,σ) is a normal subcrossed module of (A,B,α) then by the conditions [CM2] of Definition 3.10; and [NCM2] and [NCM4] of Definition 3.12, S becomesanidealofA. As an example if (f,g): (A,B,α) → (A(cid:48),B(cid:48),α(cid:48)) is a morphism of crossed modules in C, then(Kerf,Kerg,α ),thekernelof(f,g),isanormalsubcrossedmoduleof(A,B,α). |Kerf AsacorollaryofLemma3.9anormalcrossedmoduleinCcanbecharacterizedasfollow. Corollary3.14 Asubcrossedmodule(S,T,σ)of(A,B,α)isnormalifandonlyifS(cid:111)T isanideal ofA(cid:111)B. WenowobtainquotientcrossedmoduleinCasfollows: Theorem3.15 Let (S,T,σ) be a normal subcrossed module of (A,B,α) in C. Then we have a crossed module(A/S,B/T,α∗)calledquotient crossed modulewhereA/S andB/T are quotient groupswithoperations. Proof: TheactionsofB/T onA/S aredefinedby [b]·[a] = [b·a] [b](cid:63)[a] = [b(cid:63)a]. 9 These actions are well defined. If [b] = [b ] ∈ B/T and [a] = [a ] ∈ A/S, then b−b ∈ T and 1 1 1 a−a ∈ S. Hence 1 b·a−b ·a = b·(a−a +a )−b ·a 1 1 1 1 1 1 = b·(a−a )+b·a −b ·a 1 1 1 1 = b·(a−a )+(b−b +b )·a −b ·a 1 1 1 1 1 1 = b·(a−a )+(b−b )·(b ·a )−b ·a 1 1 1 1 1 1 andbythesubstitutionss = a−a ∈ S,t = b−b ∈ T anda = b ·a ∈ A,wegetthat 1 1 2 1 1 b·a−b ·a = b·(a−a )+(b−b )·(b ·a )−b ·a 1 1 1 1 1 1 1 1 = b·s+(t·a )−a . 2 2 Since b·s,(t·a )−a ∈ S by the conditions [NCM2] and [NCM3], we have that b·s+(t· 2 2 a )−a = b·a−b ·a ∈ S. Thismeans[b·a] = [b ·a ]inB/T. Moreover 2 2 1 1 1 1 b(cid:63)a−b (cid:63)a = b(cid:63)a−b(cid:63)a +b(cid:63)a −b (cid:63)a 1 1 1 1 1 1 = b(cid:63)(a−a )+(b−b )(cid:63)a 1 1 1 andbythesamesubstitutionsaboveweget b(cid:63)a−b (cid:63)a = b(cid:63)s+t(cid:63)a . 1 1 1 andsobytheconditions[NCM4]and[NCM5]b(cid:63)a−b (cid:63)a ∈ S. Hence[b(cid:63)a] = [b (cid:63)a ]and 1 1 1 1 thereforetheseactionsarewelldefined. Thesearederivedactionssincetheconditionsof[13,Proposition1.1]aresatisfied. Ontheotherhanditisclearthattheboundarymap,α∗: A/S → B/T definedbyα∗([a]) = [α(a)],iswelldefinedandtheconditions[CM1]-[CM4]ofDefinition3.10aresatisfied. (cid:4) The following result is useful for some proofs (see for example the proofs of Theorem 5.11andTheorem6.7). Theproofisclearandsoitisomitted. Proposition3.16 Let (cid:47)(cid:47) (cid:47)(cid:47) (cid:47)(cid:47) (cid:47)(cid:47) 1 S A P 1 σ α π (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) (cid:47)(cid:47) (cid:47)(cid:47) (cid:47)(cid:47) (cid:47)(cid:47) 1 T B Q 1 be a short exact sequence of crossed modules in C. Then (S,T,σ) is a normal subcrossed module of 10