ebook img

Normality and quotient in crossed modules, cat$^1$-groups and internal groupoids within groups with operations PDF

0.61 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Normality and quotient in crossed modules, cat$^1$-groups and internal groupoids within groups with operations

Normality and quotient in crossed modules, 1 cat -groups and internal groupoids within groups with operations Tunçar S¸ahan∗a and Osman Mucuk†b 6 1 aDepartmentofMathematics,AksarayUniversity,Aksaray,TURKEY 0 2 bDepartmentofMathematics,ErciyesUniversity,Kayseri,TURKEY n a J 6 2 Abstract ] T C Inthispaperwedefinethenotionsofnormalsubcrossedmoduleandquotientcrossed . h module within groups with operations; and using the equivalence of crossed modules t a over groups with operations and internal groupoids we prove how normality and quo- m tient concepts are related in these two categories. Further we prove an equivalence of [ crossedmodulesovergroupswithoperationsandcat1-groupswithoperationsforacer- 1 v tainalgebraiccategory;andthenbythisequivalencewedeterminenormalandquotient 5 9 objectsinthecategoryofcat1-groupswithoperations. Finallywecharacterizethecover- 0 ingsofcat1-groupswithoperations. 7 0 . 1 KeyWords: Groupwithoperations,quotientcrossedmodule,internalgroupoid. 0 Classification: 20L05,57M10,22AXX,22A22 6 1 : v i X 1 Introduction r a Crossed modules as defined by Whitehead [30, 31] have been widely used in homotopy theory [7], the theory of group representation (see [9] for a survey), in algebraic K-theory [20], and homological algebra [19, 22]. Crossed modules can be viewed as 2-dimensional groups[5]. ∗E-mail: [email protected] †E-mail: [email protected] 1 The notions of subcrossed module and normal subcrossed module were defined in [28]. In[11]BrownandSpencerprovedthatthecategoryofinternalgroupoidswithinthegroups, which are also called in [11] under the name of G-groupoids and alternative names, quite generally used are group-groupoid [10] or 2-group (see for example [3]) is equivalent to the categoryofcrossedmodulesofgroups. Usingtheequivalencein[11],recentlyin[24]normal andquotientobjectsinthecategoryofgroup-groupoidshavebeenobtained. In [21] Loday defined an algebraic object called cat1-group as a group G with two endo- morphismss,tofGsuchthatst = t,ts = sand[Kers,Kert] = 0,where[Kers,Kert]represents the commutator subgroup of G; and proved that the categories of cat1-groups and crossed modulesareequivalent. In [29] Porter proved a similar result to one in [11] holds for certain algebraic categories, introduced by Orzech [27], which definition was adapted by him and called category of groupswithoperations. ApplyingPorter’sresult,thestudyofinternalcategorytheorywas continued in the works of Datuashvili [15] and [16]. Moreover, she developed cohomology theory of internal categories, equivalently, crossed modules, in categories of groups with operations [13] and [14]. The equivalences of the categories in [11] and [29] enable us to generalize some results on group-groupoids which are internal categories within groups to the more general internal groupoids for a certain algebraic category C (see for example [2], [23],[25]and[26]). In this paper for an algebraic category C we define normal subcrossed module and quo- tient crossed module for groups with operations; and then obtain normal subgroupoid and quotientgroupoidininternalgroupoidscorrespondingrespectivelytoanormalsubcrossed module and a quotient crossed module of groups with operations. Further we prove an equivalence of crossed modules over groups with operations and cat1-groups with opera- tions for a certain algebraic category. This equivalence enables us to determine normal and quotientobjects;andcoveringsinthecategoryofcat1-groupswithoperations. MainresultsofthispaperconstitutesomepartsofthePhDthesisoffirstauthoratErciyes Universityin2014. 2 Preliminaries Let G be a groupoid. We write G for the set of objects of G and write G for the set 0 1 of morphisms. We also identify G with the set of identities of G and so an element of G 0 0 may be written as x or 1 as convenient. We write d ,d : G → G for the source and target x 0 1 1 0 maps, and, as usual, write G(x,y) for d−1(x) ∩ d−1(y), for x,y ∈ G . The composition h ◦ g 0 1 0 of two elements of G is defined if and only if d (h) = d (g), and so the map (h,g) (cid:55)→ h ◦ g 0 1 2 is defined on the pullback G × G of d and d . The inverse of g ∈ G(x,y) is denoted by 1d0 d1 1 0 1 g−1 ∈ G(y,x). If x ∈ G , we write St x for d−1(x) and call the star of G at x. Similarly we write Cost x 0 G 0 G for d−1(x) and call costar of G at x. The set of all morphisms from x to x is a group, called 1 objectgroupatx,anddenotedbyG(x). A groupoid G is totally intransitive if G(x,y) = ∅ for all x,y ∈ G such that x (cid:54)= y. Such 0 a groupoid is determined entirely by the family {G(x) | x ∈ G } of groups. This totally 0 intransitive groupoid is sometimes called totally disconnected or bundle of groups (Brown [4, pp.218]). LetGbeagroupoid. AsubgroupoidH ofGisapairofsubsetsH ⊆ G andH ⊆ G such 1 1 0 0 that d (H ) ⊆ H , d (H ) ⊆ H , 1 ∈ H for each x ∈ H and H is closed under the partial 0 1 0 1 1 0 x 1 0 1 multiplicationandtheinversioninG. AsubgroupoidH ofGiscalledwideifH = G . 0 0 Definition2.1 LetGbeagroupoid. AsubgroupoidN ofGiscallednormalifitiswideinG andg ◦N(x) = N(y)◦g forobjectsx,y ∈ G andg ∈ G(x,y). 0 Quotient groupoid is formed as follows (Higgins [17, pp.86] and Brown [4, pp.420]). Let N be a normal subgroupoid of the groupoid G. The components of N define a partition on G and we write [x] for the class containing x. Then N also defines an equivalence relation 0 on G by g ∼ h for a,b ∈ G if and only if g = n ◦ h ◦ m for some m,n ∈ N . A partial 1 1 1 composition [h]◦[g] on the morphisms is defined if and only if there exist g ∈ [g], h ∈ [h] 1 1 suchthath ◦g isdefinedinG andthen[h]◦[g] = [h ◦g ]. Thispartialcompositiondefines 1 1 1 1 1 agroupoidonclasses[x]’sasobjects. Thegroupoiddefinedinthismanneriscalledquotient groupoidanddenotedbyG/N. As it is stated in Brown [4, pp.218], in the case where the normal subgroupoid N is totally intransitive, we have that (G/N) = G and G/N(x,y) consists of all cosets g ◦N(x) 0 0 forx,y ∈ G andg ∈ G(x,y). Thegroupoidcompositionbecomes 0 (h◦N(y))◦(g ◦N(x)) = (h◦g)◦N(x). forg ∈ G(x,y)andh ∈ G(y,z). WerecallthatacrossedmoduleofgroupsoriginallydefinedbyWhitehead[30,31],con- sists of two groups A and B, an action of B on A denoted by b·a for a ∈ A and b ∈ B; and a morphism α: A → B of groups satisfying the following conditions for all a,a ∈ A and 1 b ∈ B (i) α(b·a) = b+α(a)−b, (ii) α(a)·a = a+a −a. 1 1 3 We will denote such a crossed module by (A,B,α). Let (A,B,α) and (A(cid:48),B(cid:48),α(cid:48)) be two crossedmodules. Amorphism(f ,f )from(A,B,α)to(A(cid:48),B(cid:48),α(cid:48))isapairofmorphismsof 1 2 groupsf : A → A(cid:48) andf : B → B(cid:48) suchthatf α = α(cid:48)f andf (b·a) = f (b)·f (a)fora ∈ A 1 2 2 1 1 2 1 andb ∈ B. It was proved by Brown and Spencer in [11, Theorem 1] that the category XMod(Grp) of crossedmodulesovergroupsisequivalenttothecategoryGrpGpdofgroup-groupoids. 3 Normal and quotient crossed modules in groups with op- erations The idea of the definition of categories of groups with operations comes from Higgins [18] and Orzech [27]; and the definition below is from Porter [29] and Datuashvili [12, pp.21],whichisadaptedfromOrzech[27]. Definition3.1 From now on C will be a category of groups with a set of operations Ω and with a set E of identities such that E includes the group laws, and the following conditions hold: IfΩ isthesetofi-aryoperationsinΩ,then i (a)Ω = Ω ∪Ω ∪Ω ; 0 1 2 (b) The group operations written additively 0,− and + are respectively the elements of Ω ,Ω andΩ . LetΩ(cid:48) = Ω \{+},Ω(cid:48) = Ω \{−}andassumethatif(cid:63) ∈ Ω(cid:48),then(cid:63)◦ definedby 0 1 2 2 2 1 1 2 a(cid:63)◦ b = b(cid:63)aisalsoinΩ(cid:48). AlsoassumethatΩ = {0}; 2 0 (c)Foreach(cid:63) ∈ Ω(cid:48),Eincludestheidentitya(cid:63)(b+c) = a(cid:63)b+a(cid:63)c; 2 (d) For each ω ∈ Ω(cid:48) and (cid:63) ∈ Ω(cid:48), E includes the identities ω(a + b) = ω(a) + ω(b) and 1 2 ω(a)(cid:63)b = ω(a(cid:63)b). Acategorysatisfyingtheconditions(a)-(d)iscalledacategoryofgroupswithoperations. Remark3.2 The set Ω contains exactly one element, the group identity; hence for instance 0 thecategoryofassociativeringswithunitisnotacategoryofgroupswithoperations. Example3.3 Thecategoriesofgroups,ringsgenerallywithoutidentity,R-modules,associa- tive, associative commutative, Lie, Leibniz, alternative algebras are examples of categories ofgroupswithoperations. A morphism between any two objects of C is a group homomorphism, which preserves theoperationsinΩ(cid:48) andΩ(cid:48). 1 2 Thetopologicalversionofthisdefinitioncanbestatedasfollows: 4 Definition3.4 Let X be an object in C. If X has a topology such that all operations in Ω are continuous,thenX iscalledatopologicalgroupwithoperationsinC. In particular if C is the category of groups, then a topological group with operations just becomes a topological group and if C is the category of R-modules, then it becomes a topologicalR-module. WewilldenotethecategoryoftopologicalgroupswithoperationsbyTopC. FortheobjectsAandB ofC,thedirectproductA×B withtheusualoperationsbecomes agroupwithoperations. HencethecategoryChasfiniteproducts. ThesubobjectinthecategoryCcanbedefinedasfollows. Definition3.5 Let A be an object in C. A subset B ⊆ A is called a subgroup with operations of Aifthefollowingconditionsaresatisfied: (i) b(cid:63)b ∈ B forb,b ∈ B and(cid:63) ∈ Ω ; 1 1 2 (ii) ω(b) ∈ B forb ∈ B andω ∈ Ω . 1 ThenormalsubobjectinthecategoryCofgroupswithoperationsisdefinedasfollows. Definition3.6 [27,Definition1.7]LetAbeanobjectinCandN asubgroupwithoperations of A. N is called a normal subgroup with operations or an ideal of A and written N (cid:1) A if the followingconditionsaresatisfied: (i) (N,+)isanormalsubgroupof(A,+); (ii) a(cid:63)n ∈ N fora ∈ A,n ∈ N and(cid:63) ∈ Ω(cid:48). 2 Foramorphismf: A → B inC,Kerf = {a ∈ A|f(a) = 0}isanidealofA. AquotientobjectinCisconstructedasfollows: LetAbeanobjectinCandN anidealof A. ThentherelationonAdefinedby a ∼ a iff a−a ∈ N 1 1 isanequivalencerelation. ThenthequotientsetA/N alongwiththeoperationsdefinedby [a](cid:63)[a ] = [a(cid:63)a ] 1 1 ω([a]) = [ω(a)] for(cid:63) ∈ Ω ,ω ∈ Ω becomesanobjectinCandcalledquotientgroupwithoperationsofAbyN. 2 1 InthefollowingpropositionweprovethatthecategoryChaskernelsincategoricalsense. 5 Proposition3.7 Let A be an object in C. Then N is an ideal of A if and only if it is a kernel of a morphisminC. Proof: WehavealreadyseenthatthekernelofamorphisminCisanidealofthedomain. Conversely if N is an ideal of A, then the quotient A/N becomes an object in C and quotientmorphismp: A → A/N hasN askernel. (cid:4) Let A and B be two groups with operations in C. An extension of A by B is an exact sequence ı p 0 −→ A −→ E −→ B −→ 0 (1) in which p is surjective and ı is the kernel of p. It is split if there is a morphism s: B → E such that ps = ıd . A split extension of B by A is called a B-structure on A. Given such a B B-structure on A we get actions of B on A corresponding to the operations in C. For any b ∈ B,a ∈ Aand(cid:63) ∈ Ω(cid:48) wehavetheactionscalledderivedactionsbyOrzech[27,pp.293] 2 b·a = s(b)+a−s(b) (2) b(cid:63)a = s(b)(cid:63)a. Given a set of actions of B on A (one for each operation in Ω ), let A(cid:111)B be a universal 2 algebrawhoseunderlyingsetisA×B andwhoseoperationsare (a(cid:48),b(cid:48))+(a,b) = (a(cid:48) +b(cid:48) ·a, b(cid:48) +b), (a(cid:48),b(cid:48))(cid:63)(a,b) = (a(cid:48) (cid:63)a+a(cid:48) (cid:63)b+b(cid:48) (cid:63)a, b(cid:48) (cid:63)b). Theorem3.8 [27, Theorem 2.4] A set of actions of B on A is a set of derived actions if and only if A(cid:111)B isanobjectofC. We recall that for groups with operations A and B, in [13, Proposition 1.1] all necessary andsufficientconditionsfortheactionsofB onAtobederivedactionsaredetermined. Lemma3.9 LetA,B,S andT beobjectsinC. SupposethatwehaveasetofderivedactionsofB on AandasetofderivedactionsofT onS. IfS(cid:111)T isanidealofA(cid:111)B thenthefollowingsaresatisfied. (a) S andT areidealsofAandB,respectively, (b) b·s ∈ S forallb ∈ B,s ∈ S, (c) (t·a)−a ∈ S forallt ∈ T,a ∈ A, (d) b(cid:63)s ∈ S forallb ∈ B,s ∈ S, 6 (e) t(cid:63)a ∈ S forallt ∈ T,a ∈ A. Proof: InthefollowingproofsweassumethatS (cid:111)T isanidealofA(cid:111)B and(cid:63) ∈ Ω(cid:48). 2 (a) For(s,0) ∈ S (cid:111)T and(a,0) ∈ A(cid:111)B,wehave (a,0)+(s,0)−(a,0) = (a+s−a,0) ∈ S (cid:111)T and (a,0)(cid:63)(s,0) = (a(cid:63)s,0) ∈ S (cid:111)T. Hencea+s−a ∈ S andS isanidealofA. Similarlyif(0,t) ∈ S(cid:111)T and(0,b) ∈ A(cid:111)B, then (0,b)+(0,t)−(0,b) = (0,b+t−b) ∈ S (cid:111)T and (0,b)(cid:63)(0,t) = (0,b(cid:63)t) ∈ S (cid:111)T. HenceT isanidealofB. (b) If(s,0) ∈ S (cid:111)T and(0,b) ∈ A(cid:111)B,then (0,b)+(s,0)−(0,b) = (b·s,0) ∈ S (cid:111)T andhenceb·s ∈ S. (c) For(0,−t) ∈ S (cid:111)T and(t·a,0) ∈ A(cid:111)B,itimpliesthat (t·a,0)+(0,−t)−(t·a,0) = ((t·a)−a,−t) ∈ S (cid:111)T andso(t·a)−a ∈ S. (d) For(s,0) ∈ S (cid:111)T and(0,b) ∈ A(cid:111)B,wehave (0,b)(cid:63)(s,0) = (b(cid:63)s,0) ∈ S (cid:111)T andthereforeb(cid:63)s ∈ S. (e) If(0,t) ∈ S (cid:111)T and(a,0) ∈ A(cid:111)B,then (0,t)(cid:63)(a,0) = (t(cid:63)a,0) ∈ S (cid:111)T. andt(cid:63)a ∈ S. 7 (cid:4) LetE beaB-structureonAandletF beaT-structureonS asbelow (cid:117)(cid:117) s E : 0 (cid:47)(cid:47)A ι (cid:47)(cid:47)E (cid:47)(cid:47)B (cid:47)(cid:47)0 p (cid:117)(cid:117) s(cid:48) F : 0 (cid:47)(cid:47)S ι(cid:48) (cid:47)(cid:47)F (cid:47)(cid:47)T (cid:47)(cid:47)0. p(cid:48) IfF isanidealofE thenF isanormalsubstructureofE. Thenwecanconstructthequotient splitextensionasfollows. (cid:114)(cid:114) s∗ E/F : 0 (cid:47)(cid:47)A/S ι∗ (cid:47)(cid:47)E/F (cid:47)(cid:47)B/T (cid:47)(cid:47)0 p∗ Thatis,E/F isaB/T-structureonA/S. Definition3.10 [29]AcrossedmoduleinCisatriple(A,B,α),whereAandBaretheobjects ofC,B actsonA,i.e.,wehaveaderivedactioninC,andα: A → B isamorphisminCwith theconditions: CM1. α(b·a) = b+α(a)−b; CM2. α(a)·a(cid:48) = a+a(cid:48) −a; CM3. α(a)(cid:63)a(cid:48) = a(cid:63)a(cid:48); CM4. α(b(cid:63)a) = b(cid:63)α(a),α(a(cid:63)b) = α(a)(cid:63)b foranyb ∈ B,a,a(cid:48) ∈ A,and(cid:63) ∈ Ω(cid:48). 2 A morphism (A,B,α) → (A(cid:48),B(cid:48),α(cid:48)) between two crossed modules is a pair f: A → A(cid:48) andg: B → B(cid:48) ofthemorphismsinCsuchthat (i) gα(a) = α(cid:48)f(a), (ii) f(b·a) = g(b)·f(a), (iii) f(b(cid:63)a) = g(b)(cid:63)f(a) foranyb ∈ B,a ∈ Aand(cid:63) ∈ Ω(cid:48). 2 Definition3.11 We call a crossed module (S,T,σ) in C as a subcrossed module of a crossed module(A,B,α)inCif 8 SCM1. S isasubobjectofA;andT isasubobjectofB; SCM2. σ istherestrictionofα toS; SCM3. theactionofT onS isinducedbytheactionofB onA. Definition3.12 A subcrossed module (S,T,σ) of (A,B,α) in the sense of Definition 3.11 is callednormalif NCM1. T isanidealofB, NCM2. b·s ∈ S forallb ∈ B,s ∈ S, NCM3. (t·a)−a ∈ S forallt ∈ T,a ∈ A, NCM4. b(cid:63)s ∈ S forallb ∈ B,s ∈ S, NCM5. t(cid:63)a ∈ S forallt ∈ T,a ∈ A. Remark3.13 Here we note that if (S,T,σ) is a normal subcrossed module of (A,B,α) then by the conditions [CM2] of Definition 3.10; and [NCM2] and [NCM4] of Definition 3.12, S becomesanidealofA. As an example if (f,g): (A,B,α) → (A(cid:48),B(cid:48),α(cid:48)) is a morphism of crossed modules in C, then(Kerf,Kerg,α ),thekernelof(f,g),isanormalsubcrossedmoduleof(A,B,α). |Kerf AsacorollaryofLemma3.9anormalcrossedmoduleinCcanbecharacterizedasfollow. Corollary3.14 Asubcrossedmodule(S,T,σ)of(A,B,α)isnormalifandonlyifS(cid:111)T isanideal ofA(cid:111)B. WenowobtainquotientcrossedmoduleinCasfollows: Theorem3.15 Let (S,T,σ) be a normal subcrossed module of (A,B,α) in C. Then we have a crossed module(A/S,B/T,α∗)calledquotient crossed modulewhereA/S andB/T are quotient groupswithoperations. Proof: TheactionsofB/T onA/S aredefinedby [b]·[a] = [b·a] [b](cid:63)[a] = [b(cid:63)a]. 9 These actions are well defined. If [b] = [b ] ∈ B/T and [a] = [a ] ∈ A/S, then b−b ∈ T and 1 1 1 a−a ∈ S. Hence 1 b·a−b ·a = b·(a−a +a )−b ·a 1 1 1 1 1 1 = b·(a−a )+b·a −b ·a 1 1 1 1 = b·(a−a )+(b−b +b )·a −b ·a 1 1 1 1 1 1 = b·(a−a )+(b−b )·(b ·a )−b ·a 1 1 1 1 1 1 andbythesubstitutionss = a−a ∈ S,t = b−b ∈ T anda = b ·a ∈ A,wegetthat 1 1 2 1 1 b·a−b ·a = b·(a−a )+(b−b )·(b ·a )−b ·a 1 1 1 1 1 1 1 1 = b·s+(t·a )−a . 2 2 Since b·s,(t·a )−a ∈ S by the conditions [NCM2] and [NCM3], we have that b·s+(t· 2 2 a )−a = b·a−b ·a ∈ S. Thismeans[b·a] = [b ·a ]inB/T. Moreover 2 2 1 1 1 1 b(cid:63)a−b (cid:63)a = b(cid:63)a−b(cid:63)a +b(cid:63)a −b (cid:63)a 1 1 1 1 1 1 = b(cid:63)(a−a )+(b−b )(cid:63)a 1 1 1 andbythesamesubstitutionsaboveweget b(cid:63)a−b (cid:63)a = b(cid:63)s+t(cid:63)a . 1 1 1 andsobytheconditions[NCM4]and[NCM5]b(cid:63)a−b (cid:63)a ∈ S. Hence[b(cid:63)a] = [b (cid:63)a ]and 1 1 1 1 thereforetheseactionsarewelldefined. Thesearederivedactionssincetheconditionsof[13,Proposition1.1]aresatisfied. Ontheotherhanditisclearthattheboundarymap,α∗: A/S → B/T definedbyα∗([a]) = [α(a)],iswelldefinedandtheconditions[CM1]-[CM4]ofDefinition3.10aresatisfied. (cid:4) The following result is useful for some proofs (see for example the proofs of Theorem 5.11andTheorem6.7). Theproofisclearandsoitisomitted. Proposition3.16 Let (cid:47)(cid:47) (cid:47)(cid:47) (cid:47)(cid:47) (cid:47)(cid:47) 1 S A P 1 σ α π (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) (cid:47)(cid:47) (cid:47)(cid:47) (cid:47)(cid:47) (cid:47)(cid:47) 1 T B Q 1 be a short exact sequence of crossed modules in C. Then (S,T,σ) is a normal subcrossed module of 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.