CAMBRIDGE TRACTS IN MATHEMATICS GeneralEditors B. BOLLOBÁS, W. FULTON, A. KATOK, F. KIRWAN, P. SARNAK, B. SIMON, B.TOTARO 192NormalApproximationswithMalliavinCalculus CAMBRIDGETRACTSINMATHEMATICS GENERALEDITORS B.BOLLOBÁS, W. FULTON, A. KATOK, F. KIRWAN,P. SARNAK, B.SIMON, B.TOTARO A complete list of books in the series can be found at www.cambridge.org/mathematics. Recenttitlesincludethefollowing: 157.AffineHeckeAlgebrasandOrthogonalPolynomials.ByI.G.MACDONALD 158.Quasi-FrobeniusRings.ByW.K.NICHOLSONandM.F.YOUSIF 159.The Geometry of Total Curvature on Complete Open Surfaces. By K. SHIOHAMA, T.SHIOYA,andM.TANAKA 160.ApproximationbyAlgebraicNumbers.ByY.BUGEAUD 161.EquivalenceandDualityforModuleCategories.ByR.R.COLBYandK.R.FULLER 162.LévyProcessesinLieGroups.ByM.LIAO 163.LinearandProjectiveRepresentationsofSymmetricGroups.ByA.KLESHCHEV 164.TheCoveringPropertyAxiom,CPA.ByK.CIESIELSKIandJ.PAWLIKOWSKI 165.ProjectiveDifferentialGeometryOldandNew.ByV.OVSIENKOandS.TABACHNIKOV 166.TheLévyLaplacian.ByM.N.FELLER 167.PoincaréDualityAlgebras,Macaulay’sDualSystems,andSteenrodOperations.By D.MEYERandL.SMITH 168.TheCube-AWindowtoConvexandDiscreteGeometry.ByC.ZONG 169.Quantum Stochastic Processes and Noncommutative Geometry. By K. B. SINHA and D.GOSWAMI 170.PolynomialsandVanishingCycles.ByM.TIBAˇR 171.OrbifoldsandStringyTopology.ByA.ADEM,J.LEIDA,andY.RUAN 172.RigidCohomology.ByB.LESTUM 173.EnumerationofFiniteGroups.ByS.R.BLACKBURN,P.M.NEUMANN,and G.VENKATARAMAN 174.ForcingIdealized.ByJ.ZAPLETAL 175.TheLargeSieveanditsApplications.ByE.KOWALSKI 176.TheMonsterGroupandMajoranaInvolutions.ByA.A.IVANOV 177.A Higher-Dimensional Sieve Method. By H. G. DIAMOND, H. HALBERSTAM, and W.F.GALWAY 178.AnalysisinPositiveCharacteristic.ByA.N.KOCHUBEI 179.DynamicsofLinearOperators.ByF.BAYARTandÉ.MATHERON 180.SyntheticGeometryofManifolds.ByA.KOCK 181.TotallyPositiveMatrices.ByA.PINKUS 182.NonlinearMarkovProcessesandKineticEquations.ByV.N.KOLOKOLTSOV 183.PeriodDomainsoverFiniteandp-adicFields.ByJ.-F.DAT,S.ORLIK,andM.RAPOPORT 184.AlgebraicTheories.ByJ.ADÁMEK,J.ROSICKÝ,andE.M.VITALE 185.RigidityinHigherRankAbelianGroupActionsI:IntroductionandCocycleProblem.By A.KATOKandV.NIT¸ICAˇ 186.Dimensions,Embeddings,andAttractors.ByJ.C.ROBINSON 187.Convexity:AnAnalyticViewpoint.ByB.SIMON 188.ModernApproachestotheInvariantSubspaceProblem.ByI.CHALENDARand J.R.PARTINGTON 189.NonlinearPerron–FrobeniusTheory.ByB.LEMMENSandR.NUSSBAUM 190.JordanStructuresinGeometryandAnalysis.ByC.-H.CHU 191.Malliavin Calculus for Lévy Processes and Infinite-Dimensional Brownian Motion. By H.OSSWALD Normal Approximations with Malliavin Calculus From Stein’s Method to Universality IVAN NOURDIN UniversitédeNancyI,France GIOVANNI PECCATI UniversitéduLuxembourg CAMBRIDGEUNIVERSITYPRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,SãoPaulo,Delhi,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9781107017771 (cid:2)c IvanNourdinandGiovanniPeccati2012 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2012 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata Nourdin,Ivan. NormalapproximationswithMalliavincalculus:fromStein’smethod touniversality/IvanNourdin,GiovanniPeccati. p. cm.–(Cambridgetractsinmathematics;192) Includesbibliographicalreferencesandindex. ISBN978-1-107-01777-1(hardback) 1. Approximationtheory. 2. Malliavincalculus. I. Peccati,Giovanni,1975– II. Title. QA221.N68 2012 519.2(cid:3)3–dc23 2012010132 ISBN 978-1-107-01777-1Hardback Additionalresourcesforthispublicationat www.iecn.u-nancy.fr/∼nourdin/steinmalliavin.htm CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. ToLili,JulietteandDelphine. ToEmmaEl¯ızaandIeva. Contents Preface pagexi Introduction 1 1 Malliavinoperatorsintheone-dimensionalcase 4 1.1 Derivativeoperators 4 1.2 Divergences 8 1.3 Ornstein–Uhlenbeckoperators 9 1.4 Firstapplication:Hermitepolynomials 13 1.5 Secondapplication:varianceexpansions 15 1.6 Thirdapplication:second-orderPoincaréinequalities 16 1.7 Exercises 19 1.8 Bibliographiccomments 20 2 MalliavinoperatorsandisonormalGaussianprocesses 22 2.1 IsonormalGaussianprocesses 22 2.2 Wienerchaos 26 2.3 Thederivativeoperator 28 2.4 TheMalliavinderivativesinHilbertspaces 32 2.5 Thedivergenceoperator 33 2.6 SomeHilbertspacevalueddivergences 35 2.7 Multipleintegrals 36 2.8 TheOrnstein–Uhlenbecksemigroup 45 2.9 Anintegrationbypartsformula 53 2.10 Absolutecontinuityofthelawsofmultipleintegrals 54 2.11 Exercises 55 2.12 Bibliographiccomments 57 3 Stein’smethodforone-dimensionalnormalapproximations 59 3.1 GaussianmomentsandStein’slemma 59 3.2 Stein’sequations 62 vii viii Contents 3.3 Stein’sboundsforthetotalvariationdistance 63 3.4 Stein’sboundsfortheKolmogorovdistance 65 3.5 Stein’sboundsfortheWassersteindistance 67 3.6 Asimpleexample 69 3.7 TheBerry–Esseentheorem 70 3.8 Exercises 75 3.9 Bibliographiccomments 78 4 MultidimensionalStein’smethod 79 4.1 MultidimensionalStein’slemmas 79 4.2 Stein’sequationsforidentitymatrices 81 4.3 Stein’sequationsforgeneralpositivedefinitematrices 84 4.4 BoundsontheWassersteindistance 85 4.5 Exercises 86 4.6 Bibliographiccomments 88 5 SteinmeetsMalliavin:univariatenormalapproximations 89 5.1 Boundsforgeneralfunctionals 89 5.2 NormalapproximationsonWienerchaos 93 5.3 Normalapproximationsinthegeneralcase 102 5.4 Exercises 108 5.5 Bibliographiccomments 115 6 Multivariatenormalapproximations 116 6.1 Boundsforgeneralvectors 116 6.2 ThecaseofWienerchaos 120 6.3 CLTsviachaosdecompositions 124 6.4 Exercises 126 6.5 Bibliographiccomments 127 7 ExploringtheBreuer–Majortheorem 128 7.1 Motivation 128 7.2 Ageneralstatement 129 7.3 Quadraticcase 133 7.4 TheincrementsofafractionalBrownianmotion 138 7.5 Exercises 145 7.6 Bibliographiccomments 146 8 Computationofcumulants 148 8.1 Decomposingmulti-indices 148 8.2 Generalformulae 149 8.3 Applicationtomultipleintegrals 154
Description: