ebook img

Normal Approximation by Stein’s Method PDF

418 Pages·2011·2.19 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Normal Approximation by Stein’s Method

Probability and Its Applications PublishedinassociationwiththeAppliedProbabilityTrust Editors:S. Asmussen,J. Gani,P. Jagers,T.G.Kurtz PhotoofCharlesStein,infront,with,fromlefttorightintherear,Qi-ManShao,LouisChenand LarryGoldstein,takenataconferenceatStanfordUniversityheldinhonorofCharlesStein’s90th birthdayonMarch22nd,2010 Forfurthertitlespublishedinthisseries,gotowww.springer.com/series/1560 Louis H.Y. Chen (cid:2) Larry Goldstein (cid:2) Qi-Man Shao Normal Approximation by Stein’s Method LouisH.Y.Chen Qi-ManShao DepartmentofMathematics DepartmentofMathematics NationalUniversityofSingapore HongKongUniversityofScienceand 10LowerKentRidgeRoad Technology Singapore119076 ClearWaterBay,Kowloon RepublicofSingapore HongKong [email protected] China [email protected] LarryGoldstein DepartmentofMathematicsKAP108 UniversityofSouthernCalifornia LosAngeles,CA90089-2532 USA [email protected] SeriesEditors: SørenAsmussen PeterJagers DepartmentofMathematicalSciences MathematicalStatistics AarhusUniversity ChalmersUniversityofTechnology NyMunkegade andUniversityofGothenburg 8000AarhusC 41296Göteborg Denmark Sweden [email protected] [email protected] JoeGani ThomasG.Kurtz CentreforMathematicsanditsApplications DepartmentofMathematics MathematicalSciencesInstitute UniversityofWisconsin-Madison AustralianNationalUniversity 480LincolnDrive Canberra,ACT0200 Madison,WI53706-1388 Australia USA [email protected] [email protected] ISSN1431-7028 ISBN978-3-642-15006-7 e-ISBN978-3-642-15007-4 DOI10.1007/978-3-642-15007-4 SpringerHeidelbergDordrechtLondonNewYork LibraryofCongressControlNumber:2010938379 MathematicsSubjectClassification(2010):60F05,60B12,62E17 ©Springer-VerlagBerlinHeidelberg2011 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Coverdesign:VTEX,Vilnius Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) This bookisdedicatedtoCharles Stein. We alsodedicatethisbooktoourfamilies. Annabelle,Yitian,Yipei Nancy JienaandWenqi Preface Stein’s method has developed considerably since its first appearance in 1972, and presentlyshowseverysignthatitsrangeintheoryandapplicationswillcontinueto expand.Nevertheless,theremustbesomepointalongthiscontinuingpathwhenthe methodreachesacertainlevelofmaturitythatathorough,selfcontainedtreatment, highlightedwithasamplingofitsmanysuccesses,iswarranted.Theauthorsofthis bookbelievethatnowisthistime. IntheyearssinceStein’smethodforthenormalwasintroduced,therecognition ofitspowerhasonlyslowlybeguntopercolatethroughouttheprobabilitycommu- nity,helpedalong,nodoubt,bythemainreferencesinthefieldoverthelastmany years,first,themonographofStein(1986),thecompilationofDiaconisandHolmes (2004),andtheseriesofBarbourandChen(2005a,2005b).Nevertheless,touseone barometer,todatethereexistonlyasmallnumberofbooksormonographs,targeted generallyandaccessibleatthegraduateorundergraduatelevel,thatmakeanymen- tionofStein’smethodforthenormalatall,inparticular,thetextsofStroock(2000) andRossandPeköz(2007).Withathoroughbuildingupofthefundamentalsnec- essarytocoverthemanyformsthatStein’smethodforthenormalcantaketodate, andtheinclusionofalargenumberofrecentdevelopmentsinboththeoryandap- plications,wehopethisbookonnormalapproximationwillcontinuetoaccelerate the appreciation, understanding, and use of Stein’s method. Indeed, as interest in the method has steadily grown, this book was partly written to add to the list we cangiveinresponsetothemanyquerieswehavereceivedovertheyears,regarding sourceswhereonecangotolearnmoreaboutthemethod,and,moreover,togeta senseofwhetheritcanbeappliedtonewsituations. Wehavemanytothankforthisbook’sexistence.Thefirstauthorwouldliketo thankCharlesSteinforhisideaswhichtheformerlearnedfromhimasastudentand whichhasbeenarichsourceofinspirationtohimovertheyears.Hewouldalsolike to thank his co-authors, Andrew Barbour, Kwok-Pui Choi, Xiao Fang, Yu-Kiang Leong, Qi-Man Shao and Aihua Xia, from whom he has benefited substantially throughmanystimulatingdiscussions. ThesecondauthorfirstheardaboutStein’smethod,forthePoissoncase,inalec- turebyPersiDiaconis,andhethankshisfirstteachersinthatarea,RichardArratia andLouisGordon,forconveyingarealsenseoftheuseoftheSteinequation,and vii viii Preface MichaelWatermanforprovidingafountainofwonderfulapplications.Helearned themostaboutthenormalapproximationversionofthemethod,andaboutitsap- plications,fromhisworkwithYosiRinott,towhomheismostgrateful.Hehasalso benefitedgreatlythroughall his othercollaborationswhereStein’smethodplayed arole,mostnotablythosewithGesineReinert,aswellaswithAihuaXia,Mathew Penrose,andHaimengZhang. ThethirdauthorwouldliketothankLouisChenforintroducinghimtoStein’s method,andfortheinspirationandinsighthehasprovided. AlltheauthorswouldliketothanktheInstituteforMathematicalSciences,atthe National University of Singapore, for their support of the many Singapore confer- ences,whichservedasanexusforthedisseminationofthemostrecentdiscoveries bytheparticipants,andfor thecreationof a perfectenvironmentfor theinvention ofnewideas. Forcommentsandsuggestionsregardingthepreparationofthisworktheauthors wouldparticularlyliketothankJasonFulman,IvanNourdinandGiovanniPeccati for their guidance on the material in Chap. 14. Additionally, we thank Subhankar Ghosh and Wenxin Zhou for their help in various stages of the preparation of this book,andproofreading,andXiaoFangforhisassistanceandhelpinwritingparts of Chap. 7, on Discretized Normal Approximation. The first author was partially supported by the Tan Chin Tuan Centennial Professorship Grant C-389-000-010- 101 at the National University of Singapore during the time this manuscript was prepared,thesecondauthoracknowledgesthegrantsupportofNSA-AMS091026, andthethirdauthoracknowledgesgrantsupportfromHongKongResearchGrants Council(CERG-602608and603710). For updates and further information on this book, please visit: http://mizar.usc. edu/~larry/nabsm.html. Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 TheCentralLimitTheorem . . . . . . . . . . . . . . . . . . . . . 1 1.2 ABriefHistoryofStein’sMethod . . . . . . . . . . . . . . . . . . 3 1.3 TheBasicIdeaofStein’sMethod . . . . . . . . . . . . . . . . . . 4 1.4 OutlineandSummary . . . . . . . . . . . . . . . . . . . . . . . . 8 2 FundamentalsofStein’sMethod . . . . . . . . . . . . . . . . . . . . 13 2.1 Stein’sEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 PropertiesoftheSolutions . . . . . . . . . . . . . . . . . . . . . . 15 2.3 ConstructionofSteinIdentities . . . . . . . . . . . . . . . . . . . 18 2.3.1 SumsofIndependentRandomVariables . . . . . . . . . . 19 2.3.2 ExchangeablePairs . . . . . . . . . . . . . . . . . . . . . 21 2.3.3 ZeroBias. . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.4 SizeBias . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4 A General Framework for Stein Identities and Normal ApproximationforLipschitzFunctions . . . . . . . . . . . . . . . 36 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3 Berry–EsseenBoundsforIndependentRandomVariables . . . . . . 45 3.1 NormalApproximationwithLipschitzFunctions . . . . . . . . . . 46 3.2 TheLindebergCentralLimitTheorem . . . . . . . . . . . . . . . 48 3.3 Berry–EsseenInequality:TheBoundedCase . . . . . . . . . . . . 49 3.4 TheBerry–EsseenInequalityforUnboundedVariables. . . . . . . 53 3.4.1 TheConcentrationInequalityApproach . . . . . . . . . . 53 3.4.2 AnInductiveApproach . . . . . . . . . . . . . . . . . . . 57 3.5 ALowerBerry–EsseenBound . . . . . . . . . . . . . . . . . . . 59 4 L1 Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.1 SumsofIndependentVariables . . . . . . . . . . . . . . . . . . . 65 4.1.1 L1 Berry–EsseenBounds . . . . . . . . . . . . . . . . . . 65 4.1.2 ContractionPrinciple . . . . . . . . . . . . . . . . . . . . 69 ix

Description:
Since its introduction in 1972, Stein’s method has offered a completely novel way of evaluating the quality of normal approximations. Through its characterizing equation approach, it is able to provide approximation error bounds in a wide variety of situations, even in the presence of complicated
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.