ebook img

Nonparametric Dispersion and Equality Tests PDF

40 Pages·2017·0.21 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nonparametric Dispersion and Equality Tests

Nonparametric Dispersion and Equality Tests Nathaniel E. Helwig AssistantProfessorofPsychologyandStatistics UniversityofMinnesota(TwinCities) Updated04-Jan-2017 NathanielE.Helwig (UofMinnesota) NonparametricDispersionandEqualityTests Updated04-Jan-2017 : Slide1 Copyright Copyright (cid:13)c 2017 by Nathaniel E. Helwig NathanielE.Helwig (UofMinnesota) NonparametricDispersionandEqualityTests Updated04-Jan-2017 : Slide2 Outline of Notes 1) Dispersion (Ansari-Bradley): 3) Equality (Kolmogorov-Smirnov): Overview Overview Procedure Procedure Example 1 Example 3 2) Dispersion/Location (Lepage): Overview Procedure Example 2 NathanielE.Helwig (UofMinnesota) NonparametricDispersionandEqualityTests Updated04-Jan-2017 : Slide3 DispersionTest(Ansari-Bradley) Dispersion Test (Ansari-Bradley) NathanielE.Helwig (UofMinnesota) NonparametricDispersionandEqualityTests Updated04-Jan-2017 : Slide4 DispersionTest(Ansari-Bradley) Overview Problem(s) of Interest Like two-sample location problem, we have N = m+n observations X ,...,X are iid random sample from population 1 1 m Y ,...,Y are iid random sample from population 2 1 n We want to make inferences about difference in distributions Let F and F denote distributions of populations 1 and 2 1 2 Null hypothesis is same distribution (F (z) = F (z) for all z) 1 2 Using the location-scale parameter model, we have F (z) = G([z −θ ]/η ) and F (z) = G([z −θ ]/η ) 1 1 1 2 2 2 θ and η are median and scale parameters for population j j j NathanielE.Helwig (UofMinnesota) NonparametricDispersionandEqualityTests Updated04-Jan-2017 : Slide5 DispersionTest(Ansari-Bradley) Overview Assumptions Within sample independence assumption X ,...,X are iid random sample from population 1 1 m Y ,...,Y are iid random sample from population 2 1 n Between sample independence assumption Samples {X}m and {Y}n are mutually independent i i=1 i i=1 Continuity assumption: both F and F are continuous distributions 1 2 Location assumption: θ = θ or θ and θ are known 1 2 1 2 NathanielE.Helwig (UofMinnesota) NonparametricDispersionandEqualityTests Updated04-Jan-2017 : Slide6 DispersionTest(Ansari-Bradley) Procedure Parameter of Interest and Hypothesis Parameter of interest is the ratio of the variances: V(X) γ2 = V(Y) so that γ2 = 1 whenever V(X) = V(Y). The null hypothesis about γ2 is H : γ2 = 1 0 and we could have one of three alternative hypotheses: One-Sided Upper-Tail: H : γ2 > 1 1 One-Sided Lower-Tail: H : γ2 < 1 1 Two-Sided: H : γ2 (cid:54)= 1 1 NathanielE.Helwig (UofMinnesota) NonparametricDispersionandEqualityTests Updated04-Jan-2017 : Slide7 DispersionTest(Ansari-Bradley) Procedure Test Statistic Let {Z }N denote the order statistics for the combined sample, and (k) k=1 assign rank scores (cid:26) 1,2,3,..., N, N,...,3,2,1 if N is even R∗ = 2 2 k 1,2,3,..., N−1, N+1, N−1,...,3,2,1 if N is odd 2 2 2 to the combined sample {Z }N . (k) k=1 The Ansari-Bradley test statistic C is defined as n (cid:88) C = R j j=1 where R is the assigned rank score of Y for j = 1,...,n j j NathanielE.Helwig (UofMinnesota) NonparametricDispersionandEqualityTests Updated04-Jan-2017 : Slide8 DispersionTest(Ansari-Bradley) Procedure Distribution of Test Statistic under H 0 Under H all (cid:0)N(cid:1) arrangements of Y-ranks occur with equal probability 0 n Given (N,n), calculate C for all (cid:0)N(cid:1) possible outcomes n Each outcome has probability 1/(cid:0)N(cid:1) under H n 0 Example null distribution with m = 3 and n = 2: Y-ranks C ProbabilityunderH 0 1,2 3 1/10 1,3 4 1/10 1,4 3 1/10 1,5 2 1/10 2,3 5 1/10 Note: thereare(cid:0)5(cid:1)=10possibilities 2 2,4 4 1/10 2,5 3 1/10 3,4 5 1/10 3,5 4 1/10 4,5 3 1/10 NathanielE.Helwig (UofMinnesota) NonparametricDispersionandEqualityTests Updated04-Jan-2017 : Slide9 DispersionTest(Ansari-Bradley) Procedure Hypothesis Testing One-Sided Upper Tail Test: H : γ2 = 1 versus H : γ2 > 1 0 1 Reject H if C ≥ c where P(C > c ) = α 0 α α One-Sided Lower Tail Test: H : γ2 = 1 versus H : γ2 < 1 0 1 Reject H if C ≤ [c −1] 0 1−α Two-Sided Test: H : γ2 = 1 versus H : γ2 (cid:54)= 1 0 1 Reject H if C ≥ c or C ≤ [c −1] 0 α/2 1−α/2 NathanielE.Helwig (UofMinnesota) NonparametricDispersionandEqualityTests Updated04-Jan-2017 : Slide10

Description:
Dispersion Test. (Ansari-Bradley). Nathaniel E. Helwig (U of Minnesota). Nonparametric Dispersion and Equality Tests. Updated 04-Jan-2017 : Slide 4
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.