ebook img

Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation PDF

501 Pages·2009·14.59 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation

NONNEGATIVE MATRIX AND TENSOR FACTORIZATIONS NONNEGATIVE MATRIX AND TENSOR FACTORIZATIONS APPLICATIONS TO EXPLORATORY MULTI-WAY DATA ANALYSIS AND BLIND SOURCE SEPARATION AndrzejCichocki LaboratoryforAdvancedBrainSignalProcessing,RikenBrainScienceInstitute,Japan;andWarsaw UniversityofTechnologyandSystemsResearchInstitute,PAN,Poland RafalZdunek InstituteofTelecommunications,TeleinformaticsandAcoustics,WroclawUniversityofTechnology, Poland;andRikenBrainScienceInstitute,Japan AnhHuyPhan LaboratoryforAdvancedBrainSignalProcessing,RikenBrainScienceInstitute,Japan Shun-ichiAmari ResearchUnitforMathematicalNeuroscience,RikenBrainScienceInstitute,Japan Thiseditionfirstpublished2009 ©2009JohnWiley&Sons,Ltd Registeredoffice JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyforpermissionto reuse the copyright material in this book please see our website at www.wiley.com. TherightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththeCopyright, DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inany formorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbytheUK Copyright,DesignsandPatentsAct1988,withoutthepriorpermissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbeavailable inelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrandnamesand productnamesusedinthisbookaretradenames,servicemarks,trademarksorregisteredtrademarksoftheirrespective owners.Thepublisherisnotassociatedwithanyproductorvendormentionedinthisbook.Thispublicationisdesigned toprovideaccurateandauthoritativeinformationinregardtothesubjectmattercovered.Itissoldontheunderstanding thatthepublisherisnotengagedinrenderingprofessionalservices.Ifprofessionaladviceorotherexpertassistanceis required,theservicesofacompetentprofessionalshouldbesought. MATLAB®MATLABandanyassociatedtrademarksusedinthisbookaretheregisteredtrademarksofThe MathWorks,Inc. ForMATLAB®productinformation,pleasecontact: TheMathWorks,Inc. 3AppleHillDrive Natick,MA,01760-2098USA Tel:508-647-7000 Fax:508-647-7001 E-mail:[email protected] Web:www.mathworks.com LibraryofCongressCataloging-in-PublicationData Nonnegativematrixandtensorfactorizations:applicationstoexploratorymultiwaydataanalysis andblindsourceseparation/AndrzejCichocki...[etal.]. p.cm. Includesbibliographicalreferencesandindex. ISBN978-0-470-74666-0(cloth) 1. Computeralgorithms.2. Datamining.3.Machinelearning4. Datastructures(Computerscience) I. Cichocki,Andrzej. QA76.9.A43N652009 005.1–dc22 2009016049 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN:978-0-470-74666-0 Setin9/11ptTimesbyThomsonDigital,Noida,India PrintedinSingaporebyFabulous Contents Preface xi Acknowledgments xv GlossaryofSymbolsandAbbreviations xvii 1 Introduction–ProblemStatementsandModels 1 1.1 BlindSourceSeparationandLinearGeneralizedComponentAnalysis 2 1.2 MatrixFactorizationModelswithNonnegativityandSparsityConstraints 7 1.2.1 WhyNonnegativityandSparsityConstraints? 7 1.2.2 BasicNMFModel 8 1.2.3 SymmetricNMF 9 1.2.4 Semi-OrthogonalNMF 10 1.2.5 Semi-NMFandNonnegativeFactorizationofArbitraryMatrix 10 1.2.6 Three-factorNMF 10 1.2.7 NMFwithOffset(AffineNMF) 13 1.2.8 Multi-layerNMF 14 1.2.9 SimultaneousNMF 14 1.2.10 ProjectiveandConvexNMF 15 1.2.11 KernelNMF 16 1.2.12 ConvolutiveNMF 16 1.2.13 OverlappingNMF 17 1.3 BasicApproachestoEstimateParametersofStandardNMF 18 1.3.1 Large-scaleNMF 21 1.3.2 Non-uniquenessofNMFandTechniquestoAlleviatetheAmbiguityProblem 22 1.3.3 InitializationofNMF 24 1.3.4 StoppingCriteria 25 1.4 TensorPropertiesandBasisofTensorAlgebra 26 1.4.1 Tensors(Multi-wayArrays)–Preliminaries 26 1.4.2 Subarrays,TubesandSlices 27 1.4.3 Unfolding–Matricization 28 1.4.4 Vectorization 31 1.4.5 Outer,Kronecker,Khatri-RaoandHadamardProducts 32 1.4.6 Mode-nMultiplicationofTensorbyMatrixandTensor byVector,ContractedTensorProduct 34 1.4.7 SpecialFormsofTensors 38 1.5 TensorDecompositionsandFactorizations 39 1.5.1 WhyMulti-wayArrayDecompositionsandFactorizations? 40 1.5.2 PARAFACandNonnegativeTensorFactorization 42 1.5.3 NTF1Model 47 vi Contents 1.5.4 NTF2Model 49 1.5.5 IndividualDifferencesinScaling(INDSCAL)andImplicitSliceCanonical DecompositionModel(IMCAND) 52 1.5.6 ShiftedPARAFACandConvolutiveNTF 53 1.5.7 NonnegativeTuckerDecompositions 55 1.5.8 BlockComponentDecompositions 59 1.5.9 Block-OrientedDecompositions 62 1.5.10 PARATUCK2andDEDICOMModels 63 1.5.11 HierarchicalTensorDecomposition 65 1.6 DiscussionandConclusions 66 Appendix1.A:UniquenessConditionsforThree-wayTensorFactorizations 66 Appendix1.B:SingularValueDecomposition(SVD)andPrincipalComponent Analysis(PCA)withSparsityand/orNonnegativityConstraints 67 1.B.1 StandardSVDandPCA 68 1.B.2 SparsePCA 70 1.B.3 NonnegativePCA 71 Appendix1.C:DeterminingaTrueNumberofComponents 71 Appendix1.D:NonnegativeRankFactorizationUsingWedderbornTheorem–Estimation oftheNumberofComponents 74 References 75 2 SimilarityMeasuresandGeneralizedDivergences 81 2.1 Error-inducedDistanceandRobustRegressionTechniques 82 2.2 RobustEstimation 84 2.3 Csisza´rDivergences 90 2.4 BregmanDivergence 96 2.4.1 BregmanMatrixDivergences 103 2.5 Alpha-Divergences 104 2.5.1 AsymmetricAlpha-Divergences 104 2.5.2 SymmetricAlpha-Divergences 110 2.6 Beta-Divergences 112 2.7 Gamma-Divergences 116 2.8 DivergencesDerivedfromTsallisandRe´nyiEntropy 118 2.8.1 ConcludingRemarks 119 Appendix2.A:InformationGeometry,CanonicalDivergence,andProjection 120 2.A.1 SpaceofProbabilityDistributions 120 2.A.2 GeometryofSpaceofPositiveMeasures 123 Appendix2.B:ProbabilityDensityFunctionsforVariousDistributions 125 References 127 3 MultiplicativeIterativeAlgorithmsforNMFwithSparsityConstraints 131 3.1 ExtendedISRAandEMMLAlgorithms:RegularizationandSparsity 132 3.1.1 MultiplicativeNMFAlgorithmsBasedontheSquaredEuclideanDistance 132 3.1.2 MultiplicativeNMFAlgorithmsBasedonKullback-LeiblerI-Divergence 139 3.2 MultiplicativeAlgorithmsBasedonAlpha-Divergence 143 3.2.1 MultiplicativeAlphaNMFAlgorithm 143 3.2.2 GeneralizedMultiplicativeAlphaNMFAlgorithms 147 3.3 AlternatingSMART:SimultaneousMultiplicativeAlgebraicReconstructionTechnique 148 3.3.1 AlphaSMARTAlgorithm 148 3.3.2 GeneralizedSMARTAlgorithms 150 Contents vii 3.4 MultiplicativeNMFAlgorithmsBasedonBeta-Divergence 151 3.4.1 MultiplicativeBetaNMFAlgorithm 151 3.4.2 MultiplicativeAlgorithmBasedontheItakura-SaitoDistance 156 3.4.3 GeneralizedMultiplicativeBetaAlgorithmforNMF 156 3.5 AlgorithmsforSemi-orthogonalNMFandOrthogonalThree-FactorNMF 157 3.6 MultiplicativeAlgorithmsforAffineNMF 159 3.7 MultiplicativeAlgorithmsforConvolutiveNMF 160 3.7.1 MultiplicativeAlgorithmforConvolutiveNMFBasedonAlpha-Divergence 162 3.7.2 MultiplicativeAlgorithmforConvolutiveNMFBasedonBeta-Divergence 162 3.7.3 EfficientImplementationofCNMFAlgorithm 165 3.8 SimulationExamplesforStandardNMF 166 3.9 ExamplesforAffineNMF 170 3.10 MusicAnalysisandDecompositionUsingConvolutiveNMF 176 3.11 DiscussionandConclusions 184 Appendix3.A:FastAlgorithmsforLarge-scaleData 187 3.A.1 RandomBlock-wiseProcessingApproach–Large-scaleNMF 187 3.A.2 Multi-layerProcedure 188 3.A.3 ParallelProcessing 188 Appendix3.B:PerformanceEvaluation 188 3.B.1 Signal-to-Interference-Ratio-SIR 188 3.B.2 PeakSignal-to-Noise-Ratio(PSNR) 190 Appendix3.C:ConvergenceAnalysisoftheMultiplicativeAlphaNMFAlgorithm 191 Appendix3.D:MATLABImplementationoftheMultiplicativeNMFAlgorithms 193 3.D.1 AlphaAlgorithm 193 3.D.2 SMARTAlgorithm 195 3.D.3 ISRAAlgorithmforNMF 197 Appendix3.E:AdditionalMATLABFunctions 198 3.E.1 Multi-layerNMF 198 3.E.2 MCAnalysiswithDistributedComputingTool 199 References 199 4 AlternatingLeastSquaresandRelatedAlgorithmsforNMFandSCAProblems 203 4.1 StandardALSAlgorithm 203 4.1.1 MultipleLinearRegression–VectorizedVersionofALSUpdateFormulas 206 4.1.2 WeightedALS 206 4.2 MethodsforImprovingPerformanceandConvergenceSpeedofALSAlgorithms 207 4.2.1 ALSAlgorithmforVeryLarge-scaleNMF 207 4.2.2 ALSAlgorithmwithLine-Search 208 4.2.3 AccelerationofALSAlgorithmviaSimpleRegularization 208 4.3 ALSAlgorithmwithFlexibleandGeneralizedRegularizationTerms 209 4.3.1 ALSwithTikhonovTypeRegularizationTerms 210 4.3.2 ALSAlgorithmswithSparsityControlandDecorrelation 211 4.4 CombinedGeneralizedRegularizedALSAlgorithms 212 4.5 Wang-HancewiczModifiedALSAlgorithm 213 4.6 ImplementationofRegularizedALSAlgorithmsforNMF 213 4.7 HALSAlgorithmanditsExtensions 214 4.7.1 ProjectedGradientLocalHierarchicalAlternatingLeastSquares(HALS) Algorithm 214 4.7.2 ExtensionsandImplementationsoftheHALSAlgorithm 216 4.7.3 FastHALSNMFAlgorithmforLarge-scaleProblems 217 viii Contents 4.7.4 HALSNMFAlgorithmwithSparsity,SmoothnessandUncorrelatedness Constraints 220 4.7.5 HALSAlgorithmforSparseComponentAnalysisandFlexible ComponentAnalysis 222 4.7.6 SimplifiedHALSAlgorithmforDistributedandMulti-taskCompressedSensing 227 4.7.7 GeneralizedHALS-CSAlgorithm 231 4.7.8 GeneralizedHALSAlgorithmsUsingAlpha-Divergence 233 4.7.9 GeneralizedHALSAlgorithmsUsingBeta-Divergence 234 4.8 SimulationResults 236 4.8.1 UnderdeterminedBlindSourceSeparationExamples 236 4.8.2 NMFwithSparseness,OrthogonalityandSmoothnessConstraints 237 4.8.3 SimulationsforLarge-scaleNMF 239 4.8.4 IllustrativeExamplesforCompressedSensing 241 4.9 DiscussionandConclusions 249 Appendix4.A:MATLABSourceCodeforALSAlgorithm 252 Appendix4.B:MATLABSourceCodeforRegularizedALSAlgorithms 253 Appendix4.C:MATLABSourceCodeforMixedALS-HALSAlgorithms 256 Appendix4.D:MATLABSourceCodeforHALSCSAlgorithm 259 Appendix4.E:AdditionalMATLABFunctions 261 References 264 5 ProjectedGradientAlgorithms 267 5.1 ObliqueProjectedLandweber(OPL)Method 268 5.2 Lin’sProjectedGradient(LPG)AlgorithmwithArmijoRule 270 5.3 Barzilai-BorweinGradientProjectionforSparseReconstruction(GPSR-BB) 271 5.4 ProjectedSequentialSubspaceOptimization(PSESOP) 273 5.5 InteriorPointGradient(IPG)Algorithm 275 5.6 InteriorPointNewton(IPN)Algorithm 276 5.7 RegularizedMinimalResidualNormSteepestDescentAlgorithm(RMRNSD) 279 5.8 SequentialCoordinate-WiseAlgorithm(SCWA) 281 5.9 Simulations 283 5.10 Discussions 289 Appendix5.A:StoppingCriteria 290 Appendix5.B:MATLABSourceCodeforLin’sPGAlgorithm 292 References 293 6 Quasi-NewtonAlgorithmsforNonnegativeMatrixFactorization 295 6.1 ProjectedQuasi-NewtonOptimization 296 6.1.1 ProjectedQuasi-NewtonforFrobeniusNorm 296 6.1.2 ProjectedQuasi-NewtonforAlpha-Divergence 298 6.1.3 ProjectedQuasi-NewtonforBeta-Divergence 303 6.1.4 PracticalImplementation 305 6.2 GradientProjectionConjugateGradient 305 6.3 FNMAalgorithm 308 6.4 NMFwithQuadraticProgramming 310 6.4.1 NonlinearProgramming 311 6.4.2 QuadraticProgramming 312 6.4.3 Trust-regionSubproblem 314 6.4.4 UpdatesforA 316 6.5 HybridUpdates 318

Description:
This book provides a broad survey of models and efficient algorithms for Nonnegative Matrix Factorization (NMF). This includes NMF’s various extensions and modifications, especially Nonnegative Tensor Factorizations (NTF) and Nonnegative Tucker Decompositions (NTD). NMF/NTF and their extensions ar
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.