Current Research in Systematic Musicology 2 Editor-in-Chief Prof.Dr.RolfBader MusikwissenschaftlichesInstitut UniversitätHamburg NeueRabenstr.13 20354Hamburg Germany E-mail:[email protected] Prof.Dr.MarcLeman IPEM–Dep.ofMusicology UniversityofGhent Blandijnberg2 9000Ghent Belgium E-Mail:[email protected] Prof.Dr.RolfIngeGodøy DepartmentofMusicology P.O.Box1017 Blindern0315 Oslo Norway E-Mail:[email protected] Forfurthervolumes: http://www.springer.com/series/11684 Rolf Bader Nonlinearities and Synchronization in Musical Acoustics and Music Psychology ABC Author Prof.Dr.RolfBader MusikwissenschaftlichesInstitut UniversitätHamburg Hamburg Germany Additionalmaterialtothisbookcanbedownloadedfromhttp://extras.springer.com ISSN1860-949X e-ISSN1860-9503 ISBN978-3-642-36097-8 e-ISBN978-3-642-36098-5 DOI10.1007/978-3-642-36098-5 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2012956290 (cid:2)c Springer-VerlagBerlinHeidelberg2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Contents 1 Introduction 1 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 I Signal Processing 9 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Frequency Representations 13 2.1 Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Correlogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 CorrelogramSimilarity Function . . . . . . . . . . . . 21 2.3 Spectral Centroid . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.2 Temporal Integration Path . . . . . . . . . . . . . . . 29 2.3.3 Gestalt Pattern . . . . . . . . . . . . . . . . . . . . . . 33 2.4 Spectral Entropy . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.4.2 Temporal Integration Path . . . . . . . . . . . . . . . 41 2.4.3 Entropy Gestalt Pattern . . . . . . . . . . . . . . . . . 45 2.5 Karhunen-Loeve Decomposition . . . . . . . . . . . . . . . . . 45 2.5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.6 Microphone Array Techniques . . . . . . . . . . . . . . . . . . 51 3 Embedding Representations 57 3.1 Dimensionality and Log-Log Plots . . . . . . . . . . . . . . . 58 3.2 Fractals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.3 Attractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3.1 Periodicity and Autocorrelation . . . . . . . . . . . . . 65 3.4 Pseudo Phase Plots. . . . . . . . . . . . . . . . . . . . . . . . 71 3.5 Fractal Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 75 3.5.1 Capacity or Box-Counting Dimension . . . . . . . . . 76 3.5.2 Information Dimension. . . . . . . . . . . . . . . . . . 81 3.5.3 Multi-fractal Spectrum. . . . . . . . . . . . . . . . . . 85 VI Contents 3.5.4 Information Structure . . . . . . . . . . . . . . . . . . 88 3.5.5 Correlation Dimension . . . . . . . . . . . . . . . . . . 94 3.5.6 Fractal CorrelationDimension and Transients . . . . . 98 3.5.7 Global Fractal Dimension . . . . . . . . . . . . . . . . 100 3.5.8 Entropy from Autocorrelation Matrix . . . . . . . . . 102 3.6 Lyapunov Exponent and Poincaré Maps . . . . . . . . . . . . 103 II Physical Modelling 109 4 Applications to Musical Instruments 113 5 Finite-Difference Simulation 117 5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.2 Static Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.3 Eigenvalue Solution. . . . . . . . . . . . . . . . . . . . . . . . 120 5.4 Time Dependent Solution . . . . . . . . . . . . . . . . . . . . 122 5.5 External and Internal Damping . . . . . . . . . . . . . . . . . 124 5.6 Example of a Horn Radiation . . . . . . . . . . . . . . . . . . 125 6 Finite-Element Simulation 133 6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.2 Static Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.3 Eigenvalue Analysis . . . . . . . . . . . . . . . . . . . . . . . 145 6.4 Time-Dependent Solutions . . . . . . . . . . . . . . . . . . . . 146 6.5 Moving Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 6.6 Contact Problems . . . . . . . . . . . . . . . . . . . . . . . . 147 6.7 Nonlinear Solver . . . . . . . . . . . . . . . . . . . . . . . . . 148 III Musical Acoustics 155 7 Musical Instruments 157 7.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 7.1.1 Pitch Winner of Coupled Oscillator. . . . . . . . . . . 158 7.1.2 Damping as Cause of Self-organization . . . . . . . . . 158 7.1.3 General Musical Instrument Models . . . . . . . . . . 159 7.2 Guitar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 7.2.1 Initial Transient . . . . . . . . . . . . . . . . . . . . . 164 7.2.2 String/Body Coupling Higher Order Terms . . . . . . 170 7.2.3 Coupling of Body Bending to Longitudinal Waves . . 171 7.2.4 Nonlinear Coupling between String Modes . . . . . . . 174 7.2.5 Large String Displacement. . . . . . . . . . . . . . . . 179 7.2.6 Radiation Patterns of Forced Oscillations . . . . . . . 181 7.2.7 Fractal Dimensions of Guitar Tones . . . . . . . . . . 189 Contents VII 7.3 Violin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 7.3.1 Bow – String Interaction. . . . . . . . . . . . . . . . . 198 7.3.2 Initial Transient of Bowing . . . . . . . . . . . . . . . 202 7.3.3 Finite-Difference Violin String/Bow and Body Model . . . . . . . . . . . . . . . . . . . . . 203 7.3.4 Bow-String Finite-Difference Model . . . . . . . . . . 207 7.3.5 Fractal Dimensions of Violin Tones . . . . . . . . . . . 214 7.4 Wind Instruments . . . . . . . . . . . . . . . . . . . . . . . . 220 7.4.1 Reed Instruments. . . . . . . . . . . . . . . . . . . . . 220 7.4.2 Reed Characteristics . . . . . . . . . . . . . . . . . . . 223 7.4.3 Multiphonics in Reed Instruments . . . . . . . . . . . 226 7.4.4 Fractal Dimensions of Multiphonics . . . . . . . . . . 227 7.4.5 Mirlitons . . . . . . . . . . . . . . . . . . . . . . . . . 227 7.4.6 Fractal Dimensions of Saxophone Tones . . . . . . . . 229 7.4.7 Tone Transition with a Clarinet. . . . . . . . . . . . . 230 7.4.8 Labium and Self-sustained Oscillation . . . . . . . . . 237 7.4.9 The Labium as a Raynolds-AveragedNavier-Stokes Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 243 7.4.10 The k−(cid:2) Model . . . . . . . . . . . . . . . . . . . . . 244 7.4.11 RANS Finite-Element Model of the Flute . . . . . . . 247 7.4.12 Self-organizationOrder Parameter . . . . . . . . . . . 252 7.4.13 Synchronization of Organ Pipes . . . . . . . . . . . . . 253 7.4.14 Shock Waves in Brass Instruments . . . . . . . . . . . 254 7.5 Piano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 7.6 Singing Voice . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 7.6.1 Onset Bifurcation . . . . . . . . . . . . . . . . . . . . 261 7.6.2 Vocal Folds Oscillation as Hopf Bifurcation . . . . . . 263 7.6.3 Two-Mass Model of Vocal Folds . . . . . . . . . . . . . 265 7.6.4 Asymmetric Vocal Folds: Rough Voice and Subharmonics . . . . . . . . . . . . . . . . . . . . . . . 266 7.6.5 Hysteresis Loop of Singing Onset and Offset. . . . . . 267 7.6.6 Global Fractal Dimensions of Vocal Fold Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . 270 7.7 Percussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 7.7.1 Mode Coupling in Gongs, Cymbals, or Genders . . . . 274 7.7.2 Subharmonics and Chaotic Motion in Gongs and Cymbals . . . . . . . . . . . . . . . . . . . . . . . 276 7.7.3 Pitch Glides with Gongs . . . . . . . . . . . . . . . . . 278 7.7.4 Pitch Glides in Drums . . . . . . . . . . . . . . . . . . 282 7.7.5 Friction Instruments . . . . . . . . . . . . . . . . . . . 282 7.7.6 Energy Transfer from Drum Membranes to Their Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 VIII Contents 8 Impulse Pattern Formulation 285 8.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 8.1.1 Instantaneous Interaction – Fix Point . . . . . . . . . 287 8.1.2 Delayed Interaction . . . . . . . . . . . . . . . . . . . 288 8.1.3 Multi Delayed Interaction . . . . . . . . . . . . . . . . 290 8.2 Transient Behaviour . . . . . . . . . . . . . . . . . . . . . . . 294 8.2.1 Constant Control Parameter . . . . . . . . . . . . . . 294 8.2.2 Changing Control Parameter . . . . . . . . . . . . . . 294 9 Examples of Impulse Pattern Formulation 297 9.1 Guitar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 9.1.1 Impulse Patterns . . . . . . . . . . . . . . . . . . . . . 297 9.2 Violin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 9.2.1 Impulse Pattern . . . . . . . . . . . . . . . . . . . . . 303 9.2.2 Violin Ribs . . . . . . . . . . . . . . . . . . . . . . . . 303 9.2.3 Violin String . . . . . . . . . . . . . . . . . . . . . . . 304 9.3 Reed Instruments . . . . . . . . . . . . . . . . . . . . . . . . . 306 9.3.1 Impulse Pattern . . . . . . . . . . . . . . . . . . . . . 306 9.3.2 Multiphonics . . . . . . . . . . . . . . . . . . . . . . . 306 9.4 Flute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 9.4.1 Stability Analysis. . . . . . . . . . . . . . . . . . . . . 310 9.5 Sound Production . . . . . . . . . . . . . . . . . . . . . . . . 311 9.5.1 Trumpet . . . . . . . . . . . . . . . . . . . . . . . . . . 313 9.5.2 Trombone . . . . . . . . . . . . . . . . . . . . . . . . . 314 9.5.3 Violin . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 IV Music Psychology 317 10 Psychoacoustics 319 10.1 Logic of Psychoacoustics . . . . . . . . . . . . . . . . . . . . . 319 10.2 Auditory Time Scale . . . . . . . . . . . . . . . . . . . . . . . 323 11 Timbre 329 11.1 Timbre as Multidimensional Space . . . . . . . . . . . . . . 330 11.2 Instrument Identification . . . . . . . . . . . . . . . . . . . . 351 11.3 Self-organized Neural Maps . . . . . . . . . . . . . . . . . . 351 11.4 Initial Transients and Formants . . . . . . . . . . . . . . . . 353 11.5 Articulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 11.6 Brightness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 11.7 Roughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 11.8 Profile Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 357 11.9 NeurologicalCorrelates of Timbre . . . . . . . . . . . . . . . 359 11.10 Efficient Auditory Coding . . . . . . . . . . . . . . . . . . . 362 Contents IX 11.11 Free-Energy Model of Perception . . . . . . . . . . . . . . . 366 11.12 Material Properties . . . . . . . . . . . . . . . . . . . . . . . 372 11.13 Conclusions - Structure of Timbre. . . . . . . . . . . . . . . 373 12 Rhythm 381 12.1 Time-Keeper Model . . . . . . . . . . . . . . . . . . . . . . . 382 12.2 Synergetic Model of Finger Movements . . . . . . . . . . . . 383 12.3 Polyrhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 12.4 Fractal Bownian Motion Model of Long-Term Rhythmic Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 12.5 Continuous and Discrete Movements. . . . . . . . . . . . . . 393 12.6 Rhythm and Timbre. . . . . . . . . . . . . . . . . . . . . . . 396 12.7 Participatory Discrepancies . . . . . . . . . . . . . . . . . . . 396 12.8 Resonance Model of Rhythm Perception . . . . . . . . . . . 397 12.9 Neuronal Representation of Rhythm Perception . . . . . . . 397 13 Pitch, Melody, Tonality 403 13.1 Pitch Spiral . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 13.2 Pitch as Tonal Fusion . . . . . . . . . . . . . . . . . . . . . . 405 13.3 The Logic of Tonal Systems . . . . . . . . . . . . . . . . . . 408 13.4 Tonality as Pitch and Interval Counting . . . . . . . . . . . . 413 13.5 Tonality as Gestalt Principles . . . . . . . . . . . . . . . . . 414 13.6 Neural Net Models of Tonality . . . . . . . . . . . . . . . . . 414 13.6.1 Self-Organizing Maps . . . . . . . . . . . . . . . . . . 415 13.6.2 Hidden-Layer Neural Nets . . . . . . . . . . . . . . . 419 13.7 Bayes Models of Tonality . . . . . . . . . . . . . . . . . . . . 425 13.8 Fractal CorrelationDimension as Music Event Density . . . . . . . . . . . . . . . . . . . . . . . . . . 426 13.8.1 Example 1: Ligeti – Musica Ricercata VIII, Piano Sonata Galamb Boring . . . . . . . . . . . . . . . . . 427 13.8.2 Example 2: Even Parker – Broken Wing . . . . . . . 432 14 CD Tracks 439 14.1 CD Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439 14.1.1 Audio Tracks. . . . . . . . . . . . . . . . . . . . . . . 439 14.1.2 Videos . . . . . . . . . . . . . . . . . . . . . . . . . . 439 14.1.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . 441 Index 443 List of Figures 2.1 WaveletTransformofaguitartoneforthe first100msfrom 20 Hz to 4 KHz. The shape of the attack is rounded by the changing scaling length of the integration. . . . . . . . . . . 15 2.2 Wavelettransformofanartificiallybuiltsignalconsistingof three sinusodials of 250 Hz, 1000 Hz, and 3000 Hz, lasting 100ms. The amplitude values of the frequencies are stable anddonotfluctuate overtime, asappearswith the Wavelet plot of the guitar, shown above.. . . . . . . . . . . . . . . . 16 2.3 Correlogramofapuresinewaveof300Hzfromatimeseries of 100ms. A large repetition window is chosen to show the repetition behaviour of the calculation. In later analysis we only need to look at one periodicity of the sound. . . . . . . 18 2.4 Correlogram of a white noise signal from a time series of 100ms. Again, a large repetition window is chosen to show large scale behaviour of the calculation (see text for details). 19 2.5 Correlogramof a classicalguitar tone of1 s length. The ini- tialtransientisclearlynoisy,wheretheperiodicityincreases exponentially to a steady value. . . . . . . . . . . . . . . . . 20 2.6 Correlogram of the initial transient of the classical guitar tone of Fig. 2.5, first 100 ms . . . . . . . . . . . . . . . . . 21 2.7 Correlogramsimilarityfunction SC for the sinusodialsound used above in Fig. 2.3. As all correlogram vectors SC are ti equal,allpossibletimecorrelationsshowaperfectsimilarity of SC =1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 ti 2.8 Correlogramsimilarityfunction SC forthe noisesignalused beforeinFig.2.4.Thevectorsaremuchlesscorrelatedasin Fig.2.7.Stillofcoursethe scalarproductofeachtime point vector with itself is SC =1. . . . . . . . . . . . . . . . . 23 ti,ti 2.9 Correlogram similarity function SC for the guitar tone of Fig. 2.5 in two plot style versions of the same data of SC. . 24 2.10 Correlogram similarity function SC for the initial transient of the guitar tone of the correlogramof Fig. 2.6 in two plot style versions of the same data of SC . . . . . . . . . . . . . 25 XII List of Figures 2.11 Time dependent spectral centroid of a pure sine wave of 300 Hz, calculated by a Wavelet Transform of a 100 ms constructed time series(for Wavelet Transforms see section above) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.12 Time dependent spectral centroid of white noise, calculated by a Wavelet Transform of a 100 ms time series . . . . . . 28 2.13 Time developmentof the spectral centroid of a plucked gui- tar tone of 1 s, where Fig. 2.14 is the initial transient . . . 29 2.14 Time development of the spectral centroid from a Wavelet Transform of an initial transient of a plucked guitar tone of 100 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.15 Spectral Centroid Integration Path of the spectral centroid curveofFig.2.11fora300Hzsinusodial.Asnofluctuations appear, the integration up to the highest level is 300 Hz everywhere. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.16 Spectral Centroid Integration Path of the spectral centroid curve of Fig.2.12 for white noise. Here up to the highest levelthefluctuationpathdoesnotsmoothoutandfluctuates constantly. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.17 Spectral Centroid Integration path of the spectral centroid curve of Fig. 2.13 of a plucked guitar tone . . . . . . . . . 32 2.18 Spectral Centroid Integration path of the spectral centroid curve of Fig. 2.14 of the initial transient for the guitar tone in Fig. 2.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.19 Coefficientsofd(u)forthedifferenceequationofeightsorder in E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 mic 2.20 Array plot of D for a difference equation of eights order in E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 mic 2.21 Gestaltpatternofa)a sinewaveof300Hz,b)a white noise signal, c) a guitar tone of 1 second and d) the same guitar tone within its initial transient of 100 ms as a force plots of the spectral centroid curves in comparison to the centroid curves itself and an averaged centroid curves (see text for details) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.22 Time dependent spectralentropy of a pure sine wave of 300 Hz, calculated from a Wavelet Transform of a 100 ms time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.23 Time dependent spectral entropy of white noise, calculated from a Wavelet Transform of a 100 ms time series . . . . . 39 2.24 Time dependent spectral entropy of the guitar tone used in the spectral centroid section. . . . . . . . . . . . . . . . . . 41 2.25 Timedependentspectralentropyoftheinitialtransient(100 ms) of the guitar tone used of Fig. 2.24 . . . . . . . . . . . 41 2.26 Temporalintegrationpathofspectralentropyofthe 300Hz sinusodial . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Description: