ebook img

Nonlinear Waves: From Dissipative Solitons to Magnetic Solitons PDF

525 Pages·2023·15.521 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nonlinear Waves: From Dissipative Solitons to Magnetic Solitons

Emmanuel Kengne WuMing Liu Nonlinear Waves From Dissipative Solitons to Magnetic Solitons Nonlinear Waves · Emmanuel Kengne WuMing Liu Nonlinear Waves From Dissipative Solitons to Magnetic Solitons EmmanuelKengne WuMingLiu ZhejiangNormalUniversity InstituteofPhysics Jinhua,China ChineseAcademyofSciences Beijing,China ISBN 978-981-19-6743-6 ISBN 978-981-19-6744-3 (eBook) https://doi.org/10.1007/978-981-19-6744-3 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SingaporePteLtd.2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Oneoftheauthors,EmmanuelKengne, dedicatesthisbooktothememoryofhis parents,PapaFrançoisMtopiandKUA MarieDjomou,whopassedaway, respectively,onOctober1980andSeptember 2021.Forifhehadnotbelievedthatthey wouldhavewishedhimtogivesuchhelpas hecouldtowardmakingtheirlife’sworkof servicetomankind,heshouldneverhave beenledtoco-authorthisbook. Preface Mathematical modeling is a main key for understanding and investigating diverse phenomena in both linear and nonlinear systems. When nonlinear phenomena are governedbynonlinearpartialdifferentialequations(PDEs),itisimportanttoobtain theirexactanalyticalsolutionsiftheyexist,otherwise,toobtainthenumericalsolu- tions. Therefore, explorations of exact solutions of nonlinear PDEs are turned out to be a charming and challenging area of research for mathematicians, theoretical physicists,andresearchcommunitiesformanyyearsbecausetheyarewidelyplaying asignificantroleinthestudyofnonlinearphysicalphenomenainappliedphysicsand mathematicalstudieswithessentialapplicationsinseveralareasofengineeringand naturalscienceincludingfluidmechanics,chemistry,thermodynamic,physics,elec- tromagnetism,bio-mathematics,mathematicalphysics,andviceversa.Thisiswhy itisveryimportanttodevelopdifferentanalyticalandnumericalmethodsforfinding either exact analytical or numerical solutions of nonlinear PDEs which describe nonlinear phenomena. This book focusses both on the mathematical modeling of nonlinearphenomenainnonlinearelectrictransmissionnetworksandonthestudy of dynamics of both nonlinear modulated waves and matter waves in nonlinear systems. One of its main aims is, through exact analytical solutions of nonlinear PDEs,topresentmethodicallyseveralmethodstoengineerdissipativeandmagnetic nonlinear waves such as dissipative and magnetic solitons (MSs) propagating in nonlinearsystems.Insolitontheory,thedevelopmentofdissipative,non-dissipative solitonsaswellassolitonsignalsmightbeaconsequenceofthenonlinear,dispersive, and diffusive results, whereas a soliton is also called solitary or soliton-like wave thatmaintainsitsshapes,velocity,andamplitudewiththeimpactofotherssolitons. Thebookconsistsoftwopartsandthirteenchapters.PartI,titled“Engineering NonlinearModulatedWavesinNonlinearTransmissionNetworks”,consistsoffive chaptersandinvestigatesthegenerationandthetransmissionofnonlinearmodulated waves,ingeneral,andsolitary/solitonlikewavesinparticularinlosslessandinlossy electricnonlineartransmissionnetworks(NLTNs).PartIofthebookiscomposedof twoparts,whichdealwith,respectively,one-dimensional(1D)andtwo-dimensional (2D)NLTNs.Forboth1Dand2DNLTNs,weconsiderbothlosslessanddissipative vii viii Preface NLTNs.Therespectivemodelsarebasedoneither1Dor2Dconservativeanddissi- pativenonlinearSchrödinger(NLS)equations,derivativeNLSequationscubicand cubic-quintic complex Ginzburg-Landau (CGL) equations, Kundu–Eckhaus equa- tion, Chen-Liu and generalized Chen–Lee–Liu equations and cubic-quintic CGL equationswithderivativeterms.Chapter2dealswiththeNLSmodelsforsolitons propagation in 1D lossless nonlinear transmission networks, while Chap. 3 treats thegenerationofdissipativesolitonsinone-dimensionalNLTNs.InChaps.4and5, wefocusourattention,respectively,tothedynamicsofroguewavesin1DNLTNs andtothetransmissionofnonlinearmodulatedwavesinmulti-componentnonlinear transmissionnetworks. PartIIofthisbooktitled“DynamicsofMatter-WaveandMagnetic-WaveSoli- tons”iscomposedofeightchapters.Inthispartofthebook,wedevelopbasictheo- reticalresultsforthedynamicsmatter-waveandmagnetic-wavesolitonsofnonlinear systemsingeneralandofBose–Einsteincondensates(BECs)inparticular,aswell asofopticalfieldstrappedinexternalpotentials,combinedwiththetime-modulated nonlinearity.Therespective models arebasedonone-,two-,andthree-component non-autonomousGross–PitaevskiiequationsorNLSequationswithexternalpoten- tials. Chapter 7 addresses the dynamics of one-component condensates with time modulation of the scattering length and trapping potential. Here, the approach outlinedaboveleadstotheconstructionandmanagementofnon-autonomoussoli- tons of 1D cubic self-defocusing NLS equations with spatiotemporally modulated coefficientsthatmaybetransformedintotheclassicalintegrableNLSequation.In thissetting,matter-wavesolitonsolutionsareconstructedinananalyticalform,and itisshownthattheinstabilityofthosesolitons,ifany,maybedelayedorcompletely eliminatedbyvaryingthenonlinearity’sstrengthintime.InthisChap.7,wealsoengi- neernon-autonomousmatter-wavesolitonsinBECswithspatiallymodulatedlocal nonlinearityandatime-dependentharmonic-oscillator(HO)potential.Themodula- tionalinstabilityinthatsettingisconsideredtoo.Chapter8dealswiththedynamicsof matterroguewavesinBECstrappedintime-dependentexternalpotential.Chapter9 treats the soliton generation in multi-component Bose–Einstein condensates. In Chap. 10, we proceed to more general non-integrable models, which are treated by means of the semi-analytical variational approximation and direct numerical simulations. In this case, we address the dynamics of two- and three-dimensional condensates with the nonlinearity strength containing constant and harmonically varyingparts,whichcanbeimplementedwiththehelpofACmagneticfieldtuned to FR. In particular, the spatially uniform temporal modulation of the nonlinearity mayreadilyplaytheroleofaneffectivetrapthatconfinesthecondensateandsome- timesenforcesitscollapse.Chapter11dealswiththeinvestigationofsolitonstates in a model based on a set of three coupled GP equations modeling the dynamics of the spinor BEC. Both integrable and non-integrable versions of the system are considered,andexactsolitonsolutionsaredemonstrated.Thestabilityofthesolu- tionswaschecked,inmostcases,bydirectsimulations,and,insomecases,itwas investigated in a more rigorous form, based on linearized Bogoliubov–de Gennes (BdG)equationsforsmallperturbations.Themotionofbrightanddarkmatter-wave solitonsin1DBECinthepresenceofspin-orbitcoupling(SOC)isalsotreatedin Preface ix Chap. 11. Here, we demonstrate that the spin dynamics of the SOC solitons are governed by a nonlinear Bloch equation and affects the orbital motion of the soli- tons,leadingtoSOCeffectsinthedynamicsofmacroscopicquantumobjects.The models addressed in Chap. 11, as well as the applied methods and the obtained results, are quite similar to those produced by the engineering. In particular, the macroscopic SOC phenomenology is explained by the fact that an effective time- periodicforceproducedbyrotationofthesoliton’s(pseudo-)spinplaystheroleof temporal management which affects the motion of the same soliton. Chapters 12 and 13 deal with the dynamics of magnetization in ferromagnet with or without spin-transfertorque. This research book, which accurately treats the mathematical modeling of nonlinear phenomena and presents methodically several methods for engineering thepropagationofnonlinearwavesinnonlinearsystems,issuitableforphysicists, mathematicians,engineers,aswellasforgraduateandpostgraduatestudentsfrom schoolsofmathematics,physics,network,andinformationengineering. Jinhua,China EmmanuelKengne Beijing,China WuMingLiu Acknowledgements Nobody has been more important to Prof. Emmanuel Kengne of the Zhejiang NormalUniversity(China),oneoftheauthors,inthepursuitofthemultipleprojects leadingtothisbookthanthemembersofhisfamily.Hewishestothankhislovingand supportivewife,EleonoreNkuojipSado,andhisthreewonderfulchildren,Kengneson DelmaDjomo,KengnesonWeierstrassOwanWambo,andKengnesonCris-Carelle Djike all at Gatineau-Quebec-Canada, whose love and guidance are with him in whateverhepursues.Theyaretheultimaterolemodels. This book was supported by the Chinese Academy of Sciences PIFI under the grantNo.2023VMA0019,NationalKeyR&DProgramofChinaundergrantsNo. 2021YFA1400900,2021YFA0718300,2021YFA1402100,andNSFCundergrants Nos.11835011,61835013,12234012,SpaceApplicationSystemofChinaManned SpaceProgram. xi Contents PartI EngineeringNonlinearModulatedWavesinNonlinear TransmissionNetworks 1 Introduction .................................................. 3 References .................................................... 5 2 NonlinearSchrödingerModelsforSolitonsPropagationin1D LosslessNonlinearTransmissionNetworks(NLTNs) .............. 7 2.1 Introduction ............................................. 7 2.2 StandardNonlinearSchrödingerEquationsforModulated WavesPropagationinaLosslessElectricalTransmission theNetwork:EffectsoftheDispersiveElementC ............ 8 S 2.2.1 ModelEquations ................................. 9 2.2.2 Bright and Dark Single-Solitary Waves Propagatinginthe1DLosslessNetworkofFig.2.1 .... 13 2.3 ModulationalInstabilityandTransmissionofChirped Femtosecond Signals Through the Lossless Electrical NetworkofFig.2.1 ....................................... 20 2.3.1 Introduction ...................................... 21 2.3.2 ModulationalInstabilityandEvolutionofChirped Femtosecond Solitary Signals Embedded onaNon-vanishingCWBackground ................ 23 2.3.3 SisterFemtosecondNonlinearModulatedWaves withTwoNonlinearChirpTerms .................... 30 References .................................................... 45 3 Transmission of Dissipative Solitonlike Signals Through One-DimensionalTransmissionNetworks ....................... 47 3.1 ChirpedLambertW-KinkWavesPropagationinaLossy ElectricalTransmissionNetwork ........................... 47 3.1.1 Introduction ...................................... 47 3.1.2 AmplitudeEquation ............................... 49 xiii

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.