Solid Mechanics and Its Applications David Wagg Simon Neild Nonlinear Vibration with Control For Flexible and Adaptive Structures Second Edition Solid Mechanics and Its Applications Volume 218 Founding Editor G.M.L. Gladwell, Waterloo, ON, Canada Series editors J.R. Barber, Ann Arbor Michigan, USA Anders Klarbring, Linköping, Sweden Aims and Scope of the Series The fundamental questions arising in mechanics are: Why?, How?, and How much? The aim of this series is to provide lucid accounts written by authoritative researchersgivingvisionandinsightinansweringthesequestionsonthesubjectof mechanics as it relates to solids. The scope of the series covers the entire spectrum of solid mechanics. Thus it includes the foundation of mechanics; variational formulations; computational mechanics;statics,kinematicsanddynamicsofrigidandelasticbodies:vibrations of solids and structures; dynamical systems and chaos; the theories of elasticity, plasticity and viscoelasticity; composite materials; rods, beams, shells and membranes; structural control and stability; soils, rocks and geomechanics; fracture; tribology; experimental mechanics; biomechanics and machine design. Themedianlevelofpresentationistothefirstyeargraduatestudent.Sometexts aremonographsdefiningthecurrentstateofthefield;othersareaccessibletofinal year undergraduates; but essentially the emphasis is on readability and clarity. More information about this series at http://www.springer.com/series/6557 David Wagg Simon Neild (cid:129) Nonlinear Vibration with Control For Flexible and Adaptive Structures Second Edition 123 David Wagg SimonNeild Department of Mechanical Engineering Department of Mechanical Engineering Universityof Sheffield Universityof Bristol Sheffield Bristol UK UK ISSN 0925-0042 ISSN 2214-7764 (electronic) ISBN 978-3-319-10643-4 ISBN 978-3-319-10644-1 (eBook) DOI 10.1007/978-3-319-10644-1 LibraryofCongressControlNumber:2014949364 SpringerChamHeidelbergNewYorkDordrechtLondon 1stedition:©CanopusAcademicPublishingLimited2010 ©SpringerInternationalPublishingSwitzerland2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Identifying, modelling and controlling nonlinear vibrations is becoming increas- ingly important in a range of engineering applications. This is particularly true in thedesignofflexiblestructuressuchasaircraft,satellites,bridges,sportsstadiaand other tall/slender structures. There are also applications in the areas of robotics, mechatronics, micro-electro-mechanical systems (MEMS) and non-destructive testing (NDT) and related disciplines such as structural health monitoring (SHM). In the majority of cases, the trend is towards lighter structures, increased flexi- bility and other higher levels of performance requirements. It is increasingly commonforstructurestohaveintegratedactuatorandsensornetworkstocarryout tasks such as limiting unwanted vibrations, detecting damage and in some cases changing theshape ofthe structure.Thesetypes ofstructures have becomeknown as smart structures (sometimes called adaptive or intelligent structures). They are often made of new composite materials and their ability to perform multiple tasks means that these types of smart structures are multifunctional. Nonlinear behaviour in structural dynamics arises naturally from a range of commonmaterialandgeometricnon-linearities.Bytheirnature,thesestructuresare typicallymadeupofhighlyflexiblecontinuouselementssuchasbeams,cablesand plates.Theyarealsorequiredtooperateinadynamicenvironmentand,asaresult, understanding the vibration behaviour of the structures is critically important. The focus of this book is first to give a comprehensive treatment of nonlinear multi-modal structuralvibration problems, and then to show how (alimitedset of) control techniques can be applied to such systems. The emphasis is on continuous structural elements with relatively simple geometry, which enables a range of analytical and approximate techniques to be presented, without the need for extensivenumericalsimulation.Itshouldbeemphasizedthatthereisnoattemptto provide a comprehensive treatment of nonlinear control techniques in this book. Instead, a limited set of control approaches which apply to problems of vibration control are presented. The aim was to make the book accessible to the reader with some background knowledge in linear vibration. The book falls into two main parts. The first five chapters have been developed from lecture notes taught at masters level, and v vi Preface example problems are included at the ends of Chaps. 2–4. The second half of the book,Chaps.5–8,hasmoreofaresearchemphasis,withcasestudiesandresearch examples shown where appropriate. Chapters 1–3 contain introductory material on nonlinear vibration phenomena and controlmethodsfor nonlinear vibration. Chapter 4introduces the approximate techniquessuchasharmonicbalance,andperturbationmethodswhichcanbeused for analysis of nonlinear vibration problems. The topic of modal analysis for nonlinear structures is discussed in detail in Chap. 5. In particular, normal form analysis is used to model multi-modal vibration response for nonlinear structures. Then each of Chaps. 6–8 is dedicated to a particular type of structural element. Chapter6isfocusedonbeams,Chap.7oncablesandChap.8onplatesandshells. In these chapters, a selection of nonlinear vibration case studies is presented. Discussions of control methods are also included where appropriate. Since the first edition of this book was published, there has been continued interest in modelling and controlling nonlinear vibrations. The main change wehaveintroducedisthatthenormalformmethodsdescribedinChaps.4and5are now based on the second order form of the governing equations. This is a more natural approach for structural dynamics problems and has other advantages that are explained in the relevant sections. In addition to this, many more minor additions have been made to update the text. This book has only been possible with the generous help and support of many colleaguesandcollaborators.Inparticular,wewouldliketoacknowledgethework of Andres Arrieta Diaz, Andrea Cammarano, Alicia Gonzalez-Buelga, Tom Hill, Irina Lasar, Xuanang Liu, Julian Londono, Nihal Malik, Claire Massow, Jack Potter, Alex Shaw and Zhengfan Xin who carried out some of the original work, which is presented in this book. For informed discussion on the scope of the book andfeedbackonthedraftmanuscript,wewouldliketothankNickAlexander,Alex Carrella, Mike Davies, David Ewins, Peter Gawthrop, Peter Green, Dan Inman, Irfan Khan, Bernd Krauskopf, Steve Shaw, Lawrie Virgin, PaulWeaverand Keith Worden. We would also like to thank Series Editor, Graham Gladwell, for his detailed technical comments on the draft manuscript. In addition, we are very grateful to Paul Neild, who meticulously proofread the manuscript of the first editionandtoTomHill,whokindlyproducedFigs.5.6–5.12and7.10–7.13forthe second edition. Finally, we would like to thank Tom Spicer from Springer for his help and support. Contents 1 Introduction to Nonlinear Vibration and Control. . . . . . . . . . . . . . 1 1.1 Vibration of Flexible Structures. . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Causes of Nonlinear Vibration. . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Geometric Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 External Forces and Constraints . . . . . . . . . . . . . . . . . . 7 1.2.4 Freeplay, Backlash, Impact and Friction. . . . . . . . . . . . . 9 1.2.5 Control and Delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 Mathematical Models for Vibration . . . . . . . . . . . . . . . . . . . . . 11 1.3.1 Linear Vibration Modelled Using Sine Waves. . . . . . . . . 12 1.3.2 Nonlinear Vibration Modelled Using Sine Waves . . . . . . 17 1.3.3 Multiple Degrees-of-Freedom . . . . . . . . . . . . . . . . . . . . 20 1.4 Control of Nonlinear Vibrations. . . . . . . . . . . . . . . . . . . . . . . . 25 1.4.1 Feedback Control of Linear Systems . . . . . . . . . . . . . . . 26 1.4.2 Feedback Control of Nonlinear Systems. . . . . . . . . . . . . 30 1.5 Continuous Structural Elements. . . . . . . . . . . . . . . . . . . . . . . . 31 1.6 Smart Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.7 Chapter Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2 Nonlinear Vibration Phenomena. . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.1 State Space Analysis of Dynamical Systems . . . . . . . . . . . . . . . 37 2.1.1 Harmonically Forced Linear Oscillator. . . . . . . . . . . . . . 38 2.1.2 Equilibrium Points. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.1.3 Local Linear Approximation Near Equilibrium Points . . . 45 2.2 Systems with Two States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.2.1 Equilibrium Points for Linear Harmonic Oscillator . . . . . 47 2.3 The Link Between State Space and Mechanical Energy . . . . . . . 51 2.3.1 Potential Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.4 Multiple Solutions, Stability and Initial Conditions. . . . . . . . . . . 58 2.4.1 Stability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 vii viii Contents 2.5 Periodic and Non-periodic Oscillations. . . . . . . . . . . . . . . . . . . 61 2.6 Parameter Variation and Bifurcations . . . . . . . . . . . . . . . . . . . . 65 2.6.1 The Onset of Oscillations via a Hopf Bifurcation . . . . . . 71 2.6.2 Bifurcations in Forced Nonlinear Oscillations . . . . . . . . . 74 2.7 Systems with Harsh Nonlinearities. . . . . . . . . . . . . . . . . . . . . . 81 2.7.1 Friction Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 2.7.2 Impact Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 2.8 Nonlinear Phenomena in Higher Dimensions. . . . . . . . . . . . . . . 87 2.8.1 The Fermi-Pasta-Ulam Paradox. . . . . . . . . . . . . . . . . . . 88 2.8.2 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 2.8.3 Modelling Approaches. . . . . . . . . . . . . . . . . . . . . . . . . 89 2.9 Chapter Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3 Control of Nonlinear Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . 97 3.1 Control Design for Nonlinear Vibrations. . . . . . . . . . . . . . . . . . 97 3.1.1 Passive Vibration Control. . . . . . . . . . . . . . . . . . . . . . . 98 3.1.2 Nonlinear Passive Vibration Isolators. . . . . . . . . . . . . . . 105 3.2 Semi-active Vibration Control. . . . . . . . . . . . . . . . . . . . . . . . . 106 3.3 Active Vibration Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 3.3.1 Observability and Controllability. . . . . . . . . . . . . . . . . . 111 3.3.2 Control Law Design . . . . . . . . . . . . . . . . . . . . . . . . . . 113 3.4 Stability Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 3.4.1 Lyapunov Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 116 3.4.2 Bounded Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 3.5 Linearisation Using Feedback . . . . . . . . . . . . . . . . . . . . . . . . . 123 3.5.1 Input-Output Linearisation . . . . . . . . . . . . . . . . . . . . . . 126 3.6 Control of Multi-Degree-of-Freedom Systems . . . . . . . . . . . . . . 130 3.6.1 Modal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 3.7 Adaptive Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 3.7.1 Adaptive Feedback Linearisation. . . . . . . . . . . . . . . . . . 136 3.8 Chapter Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 4 Approximate Methods for Analysing Nonlinear Vibrations. . . . . . . 145 4.1 Backbone Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 4.2 Harmonic Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 4.2.1 Forced Vibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 4.3 Averaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 4.3.1 Free Vibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 4.3.2 Forced Vibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 4.4 Perturbation Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 4.4.1 Regular Perturbation Theory. . . . . . . . . . . . . . . . . . . . . 163 4.4.2 Multiple Scales Method. . . . . . . . . . . . . . . . . . . . . . . . 167 Contents ix 4.5 Normal Form Transformations. . . . . . . . . . . . . . . . . . . . . . . . . 171 4.5.1 Free Vibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 4.5.2 Higher Order Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 184 4.5.3 Forced Vibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 4.5.4 Steady-State Stability. . . . . . . . . . . . . . . . . . . . . . . . . . 201 4.6 Chapter Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 5 Modal Analysis for Nonlinear Vibration . . . . . . . . . . . . . . . . . . . . 211 5.1 Modal Behaviour in Vibrating Systems. . . . . . . . . . . . . . . . . . . 212 5.2 Modal Decomposition Using Linear Techniques . . . . . . . . . . . . 213 5.2.1 Discrete Linear Systems. . . . . . . . . . . . . . . . . . . . . . . . 213 5.2.2 State Space Form for Discrete Linear Systems . . . . . . . . 216 5.2.3 Continuous Linear Systems . . . . . . . . . . . . . . . . . . . . . 219 5.3 Modal Decomposition for Nonlinear Systems . . . . . . . . . . . . . . 226 5.3.1 Nonlinear Normal Modes. . . . . . . . . . . . . . . . . . . . . . . 227 5.3.2 Internal Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 5.3.3 The Geometry of Nonlinear Modal Response . . . . . . . . . 235 5.4 Backbone Curves from Normal Form Transformations. . . . . . . . 236 5.4.1 Single Mode Backbone Curves. . . . . . . . . . . . . . . . . . . 237 5.4.2 Multi-mode Backbone Curves and Bifurcations. . . . . . . . 243 5.4.3 Nonlinear Mode Shape Analysis. . . . . . . . . . . . . . . . . . 247 5.4.4 Backbone Curves in the Symmetry Breaking Case. . . . . . 250 5.5 Application to Larger Scale Systems . . . . . . . . . . . . . . . . . . . . 257 5.6 Chapter Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 6 Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 6.1 Small-Deflection Beam Theory . . . . . . . . . . . . . . . . . . . . . . . . 261 6.1.1 The Euler-Bernoulli Equation . . . . . . . . . . . . . . . . . . . . 262 6.1.2 The Galerkin Method. . . . . . . . . . . . . . . . . . . . . . . . . . 265 6.1.3 Initial Conditions and Forcing. . . . . . . . . . . . . . . . . . . . 268 6.1.4 Collocation Method. . . . . . . . . . . . . . . . . . . . . . . . . . . 271 6.2 Nonlinear Beam Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 6.2.1 Large Deflections of Thin Beams . . . . . . . . . . . . . . . . . 277 6.2.2 Nonlinear Beam Equations with Axial Loading. . . . . . . . 278 6.2.3 Stretching of a Constrained Beam. . . . . . . . . . . . . . . . . 292 6.3 Case Study of Modal Control Applied to a Cantilever Beam. . . . 299 6.3.1 Modal Control of a Beam. . . . . . . . . . . . . . . . . . . . . . . 299 6.3.2 Vibration Suppression Using Piezoelectric Actuation. . . . 303 6.3.3 Positive Position Feedback. . . . . . . . . . . . . . . . . . . . . . 304 6.3.4 PPF for Nonlinear Vibration. . . . . . . . . . . . . . . . . . . . . 308 6.4 Chapter Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Description: