ebook img

Nonlinear Systems PDF

766 Pages·2001·36.546 MB·768\766
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nonlinear Systems

Nonlinear Systems Third Edition HASSAN K. KHALIL Department of Electrical and Computer Engineering Michigan State University PRENTICE HALL Upper Saddle River, New Jersey 07458 Library of Congress Cataloging-in-Publication Data CIP data on file. Vice President and Editorial Director, ECS: Marcia Horton Associate Editor: Alice Dworkin Vice President and Director of Production and Manufacturing, ESM: David W. Riccardi Executive Managing Editor: Vince O’Brien Managing Editor: David A. George Production Editor: Tamar Savir Composition: PreTRxX, Inc. Director of Creative Services: Paul Belfanti Creative Director: Carole Anson Art Director: Jayne Conte Art Editor: Greg Dulles Cover Designer: Bruce Kenselaar Manufacturing Manager: Trudy Pisctotti Manufacturing Buyer: Lisa McDowell Marketing Manager: Holly Stark Prentice © 2002, 1996by Prentice Hall | Hall. Prentice-Hall, Inc. ee (Upper Saddle River, NJ 07458 All rights reserved. No part ofthis book may be reproduced in any form or by any means, without permission in writing from the publisher. The author and publisher ofthis book have used their best efforts in preparing this book. These efforts include the development, research, and testing ofthe theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use ofthese programs. Printed in the United States of America 10098765 4 ISBN Q-13-0b73849-7 Pearson Education Ltd., London Pearson Education Australia Pty. Ltd., Sydney Pearson Education Singapore, Pte. Ltd. Pearson Education North Asia Ltd., Hong Kong Pearson Education Canada, Inc., Toronto Pearson Educacion de Mexico, S.A. de C.V. Pearson Education—Japan, Tokyo Pearson Education Malaysia, Pte. Ltd. Pearson Education, Upper Saddle River, New Jersey To my mentor, Petar V. Kokotovié and my family Amina, Mohammad, Omar, Yousuf, and Suzanne Contents Preface xiii 1 Introduction R 1.1 Nonlinear Models and Nonlinear Phenomena r 1.2 Examples. ..........-2.-2.-.22-- l O 1.2.1 Pendulum Equation ......... l O 1.2.2 Tunnel-Diode Circuit ........ m O 1.2.3 Mass-Spring System ........ 1.2.4 Negative-Resistance Oscillator .. . ee ee eee eee 1.2.5 Artificial Neural Network ...... 14 1.2.6 Adaptive Control .......... 16 ee eee ee ee le 1.2.7 Common Nonlinearities ....... 18 1.3 Exercises . 2... 2... ee 24 ee ee wee ee 2 Second-Order Systems 30 2.1 Qualitative Behavior of Linear Systems . . . 37 ee eee we 2.2 Multiple Equilibria. 2... 2... 2. 2. 46 ee ee eee ee 2.3 Qualitative Behavior Near Equilibrium Points 51 2.4 Limit Cycles .. 2... .....0.....0.. 54 ee ee ewe ee 2.0 Numerical Construction of Phase Portraits . 59 ee ee eee 2.6 Existence of Periodic Orbits. ........ 61 eee ee eee 2.7 Bifurcation... 2.2... ..0.. 0-0-0200 - 69 eee wee 2.8 Exercises... 2... 2. ee ee ee ee 76 eee eee eee 3 Fundamental Properties 87 3.1 Existence and Uniqueness .......... 88 3.2 Continuous Dependence onInitial Conditions and Parameters ............... 95 eee eee wet 3.3 Differentiability of Solutions and Sensitivity Equations .............-.+-.. 99 3.4 Comparison Principle ............ 102 3.9 Exercises... 2... ee ee ee eee 105 ee ee wee et vii vill CONTENTS Lyapunov Stability 111 4.1 Autonomous Systems ........-00 02 eee 112 4.2 The Invariance Principle... .............2.2-2.2-02005% 126 4.3 Linear Systems and Linearization ..............-..-000- 133 4.4 Comparison Functions... ..........2. 2.0000 eee eee 144 4.5 Nonautonomous Systems ............- 2.05002 ee eee 147 4.6 Linear Time-Varying Systems and Linearization ............. 156 4.7 Converse Theorems .........0 000 2 eee ee ee 162 4.8 Boundedness and Ultimate Boundedness ................. 168 4.9 Input-to-State Stability ....................-.22040. 174 4.10 Exercises... 2... ee 181 Input-Output Stability 195 5.1 £ Stability... 2.2... ee ee ee 195 5.2 £ Stability of State Models... 2... ........-.-...--.000- 201 5.3 Lo Gain 2... ee 209 5.4 Feedback Systems: The Small-Gain Theorem .............. 217 5.5 Exercises... ee ee 222 Passivity 227 6.1 Memoryless Functions... .......2.. 000. ee ee ee ee 228 6.2 State Models... 2... 2... ee ee 233 6.3 Positive Real Transfer Functions ..................26. 237 6.4 £9 and Lyapunov Stability ....................0.... 241 6.5 Feedback Systems: Passivity Theorems... ..........--.08- 245 6.6 Exercises. 2... ee 259 Frequency Domain Analysis of Feedback Systems 263 7.1 Absolute Stability 2... ......0..0.2....2.....2...000. 264 7.1.1 Circle Criterion 2... 0.0... ee ee ee ee 265 7.1.2 Popov Criterion... 2... 2.2.2.0... 0000002 eee eee 275 7.2 The Describing Function Method .............2..-22-008.- 280 7.3 Exercises... ee 296 Advanced Stability Analysis 303 8.1 The Center Manifold Theorem .......-.........22-0008- 303 8.2 Region of Attraction... 2... 2.20.02... 22002. eee ee eee 312 8.3 Invariance-like Theorems .........0. 00. ee eee ee ee ee 322 8.4 Stability of Periodic Solutions... ......-...2-..2...002..0. 329 8.5 Exercises. 2... ee 304 CONTENTS 9 Stability of Perturbed Systems 339 9.1 Vanishing Perturbation ...........2. 2000 eee eee ene 340 9.2 Nonvanishing Perturbation 346 eee eee a 9.3 Comparison Method... 2... ....0..0 00. eee ee es 300 9.4 Continuity of Solutions on the Infinite Interval 309 9.5 Interconnected Systems 308 9.6 Slowly Varying Systems .. 2... 2.2.02. eee ee 365 9.7 Exercises . 6... ee 372 10 Perturbation Theory and Averaging 381 10.1 The Perturbation Method... ...............2.220004 382 10.2 Perturbation on the Infinite Interval ................... 393 10.3 Periodic Perturbation of Autonomous Systems 397 ee ee ewe 10.4 Averaging 2.2... 2. ee 402 10.5 Weakly Nonlinear Second-Order Oscillators 411 10.6 General Averaging 413 10.7 Exercises 419 eee 11 Singular Perturbations 11.1 The Standard Singular Perturbation Model... 2... ......2.2... 11.2 Time-Scale Properties of the Standard Model 11.3 Singular Perturbation on the Infinite Interval 11.4 Slow and Fast Manifolds eee eee we 11.5 Stability Analysis 2... 2.2.2... 0.202.202 eee ee ee 11.6 Exercises . 2... ee 12 Feedback Control 12.1 Control Problems . 2... 0.0.0.0... 000 eee eee ee 12.2 Stabilization via Linearization... 2... 2. ee 12.3 Integral Control . 2 2. ee eee 12.4 Integral Control via Linearization eee ee ee we 12.5 Gain Scheduling .. 2... 2. ee ee eee 12.6 Exercises 2. 2 2 13 Feedback Linearization 13.1 Motivation... 2... ee ee 13.2 Input-Output Linearization... 2... ee ee 13.3 Full-State Linearization eee eee ee ee 13.4 State Feedback Control 13.4.1 Stabilization .......0...0.. 0.000000 ee eee 13.4.2 Tracking... 2... 2. ee ee ee 13.5 Exercises x CONTENTS 14 Nonlinear Design Tools 551 14.1 Sliding Mode Control .. 2... 2... 2 eee 552 14.1.1 Motivating Example ..............-.....2-4. 552 14.1.2 Stabilization .. 2... . ee 563 14.1.3 Tracking... 2... ee ee 572 14.1.4 Regulation via Integral Control... .............. 575 14.2 Lyapunov Redesign .. 2... 2.2.2.2... ee ee ee ee 579 14.2.1 Stabilization... 2... 2... ee ee 579 14.2.2 Nonlinear Damping ..................+2005 588 14.3 Backstepping .. 2... 2... 2. ee ee 589 14.4 Passivity-Based Control ............02... 2020200202 ee 604 14.5 High-Gain Observers... 2... ee ee 610 14.5.1 Motivating Example ......... So ee 612 14.5.2 Stabilization .. 2... 2... ee ee 619 14.5.3 Regulation via Integral Control... .............. 623 14.6 Exercises 2. 2. ee 625 A Mathematical Review 647 B Contraction Mapping 653 C Proofs 657 C.1 Proof of Theorems 3.1 and3.2 2. ...2..02..00. 0.0.02. 000005 657 C.2 Proof of Lemma 3.4......0.0.0.0. 2.000002 eee ee ee 659 C.3 Proof of Lemma 4.1......0.0...0. 0.0.2.0 00020808 0G 661 C.4 Proof of Lemma 4.3.......0.0.0 2.0.00 002 eee eee 662 C.5 Proof of Lemma 4.4......0...0 0.0.00. eee ee ee ee 662 C.6 Proof of Lemma 4.5......0...0.0.0 0.0.00. ee eee ee eee 663 C.7 Proof of Theorem 4.16 ......0... 020.0000 0. eee eee 665 C.8 Proof of Theorem 4.17 2... 2.0.0.0... 0.0000 eee ee ee 669 C.9 Proof of Theorem 4.18 2... ....0.02. 2.0.00. 002 eee eee 675 C.10 Proof of Theorem 5.4 .....0.0.0.020 0.000 eee ee ee ee 676 C.11 Proof of Lemma6.l......0..02020.0.00..00.02. 0.2.2. 0084 677 C.12 Proof of Lemma 6.2.....0.0.0.0.0 0.0000 eee ee ee 680 C.13 Proof of Lemma 7.1......0.0..0.. 0.00 00. ee eee ee 684 C.14 Proof of Theorem 7.4 ....0..0.0. 0.0.00. 00 eee ee ee 688 C.15 Proof of Theorems 8.1 and 8.3 ......0..0202.... 2.000208. 690 C.16 Proof of Lemma 8.1 ......0.0.0.00. 0... 0000 eee eee en 699 C.17 Proof of Theorem 11.1 ....0..0.002... 0.2.00. 0 02. ee 700 C.18 Proof of Theorem 11.2 ....0..0.00. 2.2002 eee ee 706 C.19 Proof of Theorem 12.1 .....0.0..00.0 0... 000080 eee 708 C.20 Proof of Theorem 12.2 C.21 Proof of Theorem 13.1 C.22 Proof of Theorem 13.2 x1 CONTENTS C.23 Proof of Theorem 14.6 . 2... 2. ee 713 719 Note and References 724 Bibliography 740 Symbols TAQ Index

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.