ebook img

Nonlinear System Identification and Analysis with Applications to Power Amplifier Modeling and ... PDF

196 Pages·2004·1.67 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nonlinear System Identification and Analysis with Applications to Power Amplifier Modeling and ...

Nonlinear System Identi(cid:12)cation and Analysis with Applications to Power Ampli(cid:12)er Modeling and Power Ampli(cid:12)er Predistortion A Thesis Presented to The Academic Faculty by Raviv Raich In Partial Ful(cid:12)llment of the Requirements for the Degree Doctor of Philosophy School of Electrical and Computer Engineering Georgia Institute of Technology March 2004 Nonlinear System Identi(cid:12)cation and Analysis with Applications to Power Ampli(cid:12)er Modeling and Power Ampli(cid:12)er Predistortion Approved by: Professor G. Tong Zhou, Advisor Professor J. Stevenson Kenney Professor Erik I. Verriest Professor Xiaoming Huo (School of Industrial and Systems Engi- neering) Professor Douglas B. Williams Date Approved: 31 March 2004 To my family, my wife Genevieve, and my daughter Yael iii ACKNOWLEDGEMENTS I would like to express my gratitude to the people without whom this dissertation would not have been completed. First, I would like to thank my advisor, Dr. G. Tong Zhou who continuously supported my work and ideas throughout my studies at Georgia Tech. Whenever I needed, Dr. Zhou always made herself available and put a great deal of time and e(cid:11)ort into our joint work. I am thankful for her close guidance and e(cid:11)orts to prepare me for an academic career. Next, I would like to thank my thesis defense committee: Dr. Erik Verriest, Dr. Doug Williams, Dr. J. Stevenson Kenney, and Dr. Xiaoming Huo for helping to improve my dissertation with their thoughtful advice and suggestions. Iwouldliketothankmygroupmembers: KrishnaNagarajan,MuhammadIkram,Yong- sub Kim, Gail Rosen, Lei Ding, Hua Qian, Chunpeng Xiao, Ning Chen, Vince Emanuele, Thao Tran, and Bob Baxley for useful technical discussions and fruitful collaborations. I would also like to thank some of the students from the center for signal and image processing (CSIP): Amer Abufadel, Volkan Cevher, Kevin Chan, Kerkil Choi, Farshid Del- gosha,ErdemErtan,MajidFozunbal, JohnGlotzbach,PaulHong,JayJeon,ApurvaMody, Jonathan Morris, Robert Morris, Greg Slabaugh, Martin Tobias, Nik Vasiloglou, and Ra- jbabu Velmurugan for their willingness to help, insightful discussions, and mostly for their friendship, which made my graduate experience much more enjoyable. To my family, I owe a debt of gratitude for their love and support along the path of my academic pursuits. Last but not least, I would like to express my deepest gratitude to my wife Genevieve for her continuous support and encouragement throughout my entire graduate career from the time of application to the time of graduation. Without her help, kindness, patience, and mostly her love, I would not have been able to complete this work. iv TABLE OF CONTENTS DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi SUMMARY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv CHAPTER I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Characterization and Modeling of Power Ampli(cid:12)ers . . . . . . . . . . . . . 2 1.2.1 Memoryless Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Volterra Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Wiener Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.4 Hammerstein Model . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.5 Wiener-Hammerstein Model . . . . . . . . . . . . . . . . . . . . . . 8 1.2.6 Parallel Hammerstein Model . . . . . . . . . . . . . . . . . . . . . . 9 1.3 PA Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Power Ampli(cid:12)er Linearization . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4.1 PA Linearization Architecture . . . . . . . . . . . . . . . . . . . . . 17 1.4.2 Predistortion Models . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5 Communications Aspects of Power Ampli(cid:12)ers . . . . . . . . . . . . . . . . 22 1.6 Organization of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . 24 CHAPTER II ON THE MODELING OF MEMORY NONLINEAR EF- FECTS OF POWER AMPLIFIERS FOR COMMUNICATION APPLI- CATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2 Baseband Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.1 The Quasi-memoryless Case . . . . . . . . . . . . . . . . . . . . . . 29 2.2.2 The (strictly-) Memoryless Case . . . . . . . . . . . . . . . . . . . . 29 2.3 Some Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 v 2.3.1 Diagonal Kernel System . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.2 Hammerstein System . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.3 Separable Kernel System . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.4 Wiener System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 CHAPTER III ON BASEBAND REPRESENTATION OF PASSBAND NONLINEARITIES 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2 Passband and baseband representations . . . . . . . . . . . . . . . . . . . . 35 3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 CHAPTERIV AHAMMERSTEINPREDISTORTIONLINEARIZATION DESIGNBASEDONTHEINDIRECTLEARNINGARCHITECTURE1 41 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 Indirect Learning Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3 Identi(cid:12)cation of The Hammerstein Predistorter . . . . . . . . . . . . . . . 44 4.3.1 Narendra-Gallman algorithm. . . . . . . . . . . . . . . . . . . . . . 45 4.3.2 Optimal two stage identi(cid:12)cation algorithm . . . . . . . . . . . . . . 46 4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 CHAPTER V ORTHOGONAL POLYNOMIALS FOR POWER AMPLI- FIER MODELING AND PREDISTORTER DESIGN1 . . . . . . . . . 51 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2 The polynomial model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2.1 The conventional polynomial model . . . . . . . . . . . . . . . . . . 53 5.2.2 Orthogonal polynomial bases . . . . . . . . . . . . . . . . . . . . . 57 5.2.3 Discussions on the orthogonal polynomial basis . . . . . . . . . . . 59 5.2.4 PA modeling example . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.2.5 Extension to the memory polynomial case . . . . . . . . . . . . . . 65 5.3 Orthogonal polynomial predistortion . . . . . . . . . . . . . . . . . . . . . 67 5.3.1 Predistortion via the indirect learning architecture . . . . . . . . . 67 vi 5.3.2 Simulations { predistortion linearization . . . . . . . . . . . . . . . 69 5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.A Orthogonality Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 CHAPTERVI ORTHOGONALPOLYNOMIALSFORCOMPLEXGAUS- SIAN PROCESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.2.1 The Numerical Instability Problem in PA Modeling . . . . . . . . . 77 6.2.2 The Numerical Instability Problem in Predistortion Linearization . 78 6.3 Orthogonal Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3.1 Wiener G-Functionals . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.3.2 Hermite Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.4 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.5 Numerical Stability Improvement . . . . . . . . . . . . . . . . . . . . . . . 87 6.5.1 Deviation from the Gaussian Assumption. . . . . . . . . . . . . . . 89 6.5.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.A Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.B Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6.C Derivation of the Orthogonal Polynomial Predistorter . . . . . . . . . . . . 95 CHAPTER VII STATISTICAL ANALYSIS OF A BANDPASS NONLIN- EARITY WITH NONSTATIONARY INPUT . . . . . . . . . . . . . . . 97 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7.2 Basic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.3 Digitally-Modulated Signals and Spectral Analysis for Polynomial Nonlin- earity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.3.1 Digitally-Modulated Signals . . . . . . . . . . . . . . . . . . . . . . 104 7.3.2 Cyclostationary Spectral Analysis . . . . . . . . . . . . . . . . . . . 106 7.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.A Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.B Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 vii 7.C Derivation of (7.25) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7.D Derivation of (7.33) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 CHAPTER VIII ANALYZING SPECTRAL REGROWTH OF QPSK AND OQPSK SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 8.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 8.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 8.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 CHAPTER IX SPECTRAL ANALYSIS OF POLYNOMIAL NONLIN- EARITY WITH APPLICATIONS TO RF POWER AMPLIFIERS . 126 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 9.2 Cyclostationary input and spectral analysis. . . . . . . . . . . . . . . . . . 128 9.3 Quasi-memoryless PA model . . . . . . . . . . . . . . . . . . . . . . . . . . 130 9.3.1 Closed form expression for spectral regrowth . . . . . . . . . . . . . 130 9.3.2 Case study: The e(cid:11)ect of AM/PM conversion on spectral regrowth 132 9.4 Memory polynomial PA model . . . . . . . . . . . . . . . . . . . . . . . . . 136 9.4.1 Closed form expression . . . . . . . . . . . . . . . . . . . . . . . . . 137 9.4.2 Case study: Asymmetric spectral regrowth and memory e(cid:11)ects . . 138 9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 9.6 Proofs of Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 9.6.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 9.6.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 CHAPTER X OPTIMIZATION OF SNDR FOR AMPLITUDE LIM- ITED NONLINEARITIES1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 10.2 The SNDR Criterion and Its Optimization . . . . . . . . . . . . . . . . . . 146 10.2.1 SNDR De(cid:12)nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 10.2.2 Optimization of the SNDR . . . . . . . . . . . . . . . . . . . . . . . 147 10.2.3 Examples { Optimal Threshold Selection and Application . . . . . 151 10.3 Relationship between SNDR and Capacity . . . . . . . . . . . . . . . . . . 153 viii 10.3.1 Lower Bound on Capacity . . . . . . . . . . . . . . . . . . . . . . . 155 10.3.2 Upper Bound on Capacity . . . . . . . . . . . . . . . . . . . . . . . 156 10.3.3 Example on Capacity and Bounds . . . . . . . . . . . . . . . . . . . 157 10.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 10.AProof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 10.B Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 CHAPTER XI CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 165 11.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 11.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 ix LIST OF TABLES Table 1.1 Spurious emission limits when transmitting [1] . . . . . . . . . . . . . . . 12 Table 1.2 Digital predistortion: reduced power consumption, less heat dissipation and cooling costs, and higher reliability can be achieved. . . . . . . . . . 16 Table 3.1 Nonlinear systems and their representations . . . . . . . . . . . . . . . . . 38 Table 5.1 Orthogonal polynomial basis functions (x) for 1 k 7. . . . . . . . . 59 k (cid:20) (cid:20) Table 6.1 The (cid:12)rst (cid:12)ve Orthonormal polynomials for unit variance z~. . . . . . . . . 82 Table 6.2 The (cid:12)rst six Hermite-related orthonormal polynomials . . . . . . . . . . . 83 Table 9.1 Estimated polynomial PA model coe(cid:14)cients for three scenarios: (i) when both AM/AM and AM/PM conversions are present; (ii) when only the AM/AMconversionispresent((cid:8)(r) = 0); and(iii)whenonlytheAM/PM conversion is present (A(r) = 11:75 was used). . . . . . . . . . . . . . . . 135 Table 9.2 MemorypolynomialPAcoe(cid:14)cientsextractedforarealPAwithmaximum nonlinearity order 2K +1 = 7 and maximum lag Q = 2. . . . . . . . . . . 139 Table 10.1SER vs. SNR for unclipped OFDM and OFDM with optimum clipping using threshold (cid:17)?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 x

Description:
Applications to Power Amplifier Modeling and Power. Amplifier School of Electrical and Computer Engineering processing (CSIP): Amer Abufadel, Volkan Cevher, Kevin Chan, Kerkil Choi, Farshid Del- .. Figure 5.4 PDF for (i) truncated Rayleigh distribution with σ2 = 0.1086; (ii) trun- .. where fc
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.