De Gruyter Series in Nonlinear Analysis and Applications 21 EditorinChief JürgenAppell,Würzburg,Germany Editors CatherineBandle,Basel,Switzerland AlainBensoussan,Richardson,Texas,USA AvnerFriedman,Columbus,Ohio,USA Karl-HeinzHoffmann,Munich,Germany MikioKato,Kitakyushu,Japan UmbertoMosco,Worcester,Massachusetts,USA LouisNirenberg,NewYork,USA BorisN.Sadovsky,Voronezh,Russia AlfonsoVignoli,Rome,Italy KatrinWendland,Freiburg, Germany Moshe Marcus Laurent Véron Nonlinear Second Order Elliptic Equations Involving Measures De Gruyter MathematicsSubjectClassification2010:Primary:35-02,35J61,35R06,35J25,35J91; Secondary:28A33,31A05,46E35. Authors Prof.Dr.MosheMarcus Technion–IsraelInstituteofTechnology Dept.ofMathematics TechnionCity 32000Haifa Israel [email protected] Prof.Dr.LaurentVéron LaboratoiredeMathematiques CNRSUMR6083 FacultedesSciencesetTechniques UniversiteFrancoisRabelais ParcdeGrandmont 37200Tours France [email protected] ISBN978-3-11-030515-9 e-ISBN978-3-11-030531-9 Set-ISBN978-3-11-030532-6 ISSN0941-813X LibraryofCongressCataloging-in-PublicationData ACIPcatalogrecordforthisbookhasbeenappliedforattheLibraryofCongress. BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableintheinternetathttp://dnb.dnb.de. © 2014WalterdeGruyterGmbH,Berlin/Boston Typesetting:PTP-BerlinProtago-TEX-ProductionGmbH,www.ptp-berlin.de Printingandbinding:Hubert&Co.GmbH&Co.KG,Göttingen Printedonacid-freepaper PrintedinGermany www.degruyter.com Preface In the last 40 years semilinear elliptic equations became a central subject of study inthetheoryofnonlinearpartialdifferential equations.Ontheonehand,theinterest in this area is of a theoretical nature, due to its deep relations to other branches of mathematics, especially linear and nonlinear harmonic analysis and probability. On the other hand,this studyis of interest because of its applications. Equationsof this typecomeupinvariousareassuchas:problemsofphysicsandastrophysics,problems of differential geometry, logisticproblems related for instance to populationmodels and,mostimportantly,thestudyofbranchingprocessesandsuperdiffusions. An important family of such equations is that involving an absorption term, the modelof which is (cid:2)(cid:2)uCg.x,u/ D 0 where ug.x,u/ (cid:3) 0. Suchequationsare of particular interest because inthem we havetwo competingeffects: the diffusionex- pressedbythelineardifferentialpartandtheabsorptionproducedbythenonlinearity g.Furthermore,equationsofthistypewithpowernonlinearitiesplayacrucialrolein thestudyofsuperdiffusions. Naturally,thestudyofsemilinearproblemsisbasedonlineartheoryandinpartic- ularonthetheoryofboundaryvalueproblemswithL1and,moregenerally,measure data. In addition to the classical theory of the Laplace equation, this study requires certainideasofharmonicanalysissuchastheHerglotztheoremonboundarytraceof positive harmonic functions and the resulting integral representation, Kato’s lemma and the boundaryHarnack principle. These topics and their applicationto boundary valueproblemsaretreatedinthefirstchapter. Inthesecondchapterweturntothemaintopicofthismonograph:boundaryvalue problemsforthesemilinearproblem (cid:2)(cid:2)uCg.x,u/Df in(cid:3) (1) uDh on@(cid:3) wheref andhareL1functionsormoregenerallymeasures.Generallyweassumethat t 7!g.(cid:4),t/isacontinuousmappingfromRintoL1.(cid:3);(cid:4)/,where(cid:4).x/Ddist.x,@(cid:3)/, thatg.x,(cid:4)/isnon-decreasingforeveryx 2(cid:3)andg.x,0/D0.(L1.(cid:3);(cid:4)/denotesthe weightedLebesguespacewithweight(cid:4).)Inadditionweassumethat lim g.(cid:4),t/=t D 1 (2) t!1 uniformlywithrespecttox incompactsubsetsof(cid:3).Twostandardexamples: g.x,t/D(cid:4).x/ˇjtjq(cid:2)1t, g.x,t/D expt (cid:2)1. (3) vi Preface The problem (1) is understood in a weak sense; we require that u 2 L1.(cid:3)/ and g ıu 2 L1.(cid:3);(cid:4)/, that the equationholdsin the distributionsense andthat the data isattainedinaweaksense,relatedtoweakconvergenceofmeasures.Inadditionitis assumedthatf 2 L1.(cid:3);(cid:4)/or,moregenerally,f D(cid:5) 2 M.(cid:3);(cid:4)/,i.e.,(cid:5)isaBorel measurein(cid:3)suchthat Z (cid:4)dj(cid:5)j<1. (cid:2) For the boundarydata, it is assumed that h 2 L1.@(cid:3)/ or, more generally, h D (cid:6) 2 M.@(cid:3)/,i.e.,(cid:6) isafiniteBorelmeasureon@(cid:3). ProblemswithL1dataarediscussedinSection2.1.Inthiscasetheboundaryvalue problempossessesauniquesolutionu2 L1.(cid:3)/suchthatgıu2 L1.(cid:3);(cid:4)/forevery f 2 L1.(cid:3);(cid:4)/andh2L1.@(cid:3)/. An interesting feature of boundary value problems with measure data is that, in general,theproblemisnotsolvableforeverymeasure.If(1)hasasolutionforhD0 andameasure f D (cid:5) 2 M.(cid:3);(cid:4)/,we saythat(cid:5)isg-goodin(cid:3).Thespace ofsuch measures is denotedby Mg.(cid:3);(cid:4)/. Similarly, if (1) has a solution for f D 0 and a measurehD(cid:6) 2M.@(cid:3)/,wesaythat(cid:6)isg-goodon@(cid:3).Thespaceofsuchmeasures is denoted by Mg.@(cid:3)/. If Mg.(cid:3);(cid:4)/ D M.(cid:3);(cid:4)/ we say that the nonlinearity g is subcriticalintheinterior.Similarly,ifMg.@(cid:3)/DM.@(cid:3)/wesaythatgissubcritical relativetotheboundary. InSection2.2wepresentbasicresultsonboundaryvalueproblemswithmeasures. Forinstance,assumingthat(cid:5)and(cid:6)areg-good,weshowthat(1)withf D(cid:5),hD(cid:6) hasauniqueweaksolutionuandderiveestimatesforkuk andkgıuk in L1.(cid:2)/ L1.(cid:2);(cid:3)/ termsofthenormsof(cid:5)and(cid:6) intheirrespectivespaces.Inparticularwefindthat,if asolutionexistsitisunique. Animportanttoolinourstudyisanextensionof themethodofsub-andsuperso- lutionstothecase ofweak solutionsandageneralclassofnonlinearities.Thistoois presentedinSection2.2 InSection2.3we presentasufficientconditionfor interiorandboundarysubcriti- cality.It isshownthatthisconditionalsoimpliesstabilitywith respect toweak con- vergenceofdata.Further,inSection2.4,wediscussthestructureofthespaceofgood measureswhenthe nonlinearityg issupercritical intheinterior (resp. onthebound- ary),i.e.,Mg.(cid:3);(cid:4)/ M.(cid:3);(cid:4)/(resp.Mg.@(cid:3)/ M.@(cid:3)/). Chapter3isdevotedtoastudyoftheboundarytraceproblemforpositivesolutions oftheequation (cid:2)(cid:2)uCg.x,u/D0, (4) withg asin(1),andrelatedboundaryvalueproblems.Thebasicmodelforourstudy istheboundarytracetheoryforpositiveharmonicfunctionsduetoHerglotz. ByHerglotz’s theoremanypositiveharmonicfunctioninaboundedLipschitzdo- mainadmitsaboundarytraceexpressedbyaboundedmeasureandtheharmonicfunc- tionisuniquelydeterminedbythistraceviaanintegralrepresentation. Preface vii Thenotionofaboundarytraceofafunctionuin(cid:3)dependsontheregularityprop- ertiesofthefunction.Forinstance,ifu 2C.(cid:3)N/thenithasaboundarytraceinC.@(cid:3)/, namely,ub .IfubelongstoaSobolevspaceW1,p.(cid:3)/forsomep >1thenithasa @(cid:2) boundarytraceinLp.@(cid:3)/(andeveninamoreregularspace,namely,W1(cid:2)p1,p.@(cid:3)/). Themeasureboundarytraceofapositiveharmonicfunctionisdefinedasfollows:let ¹(cid:3) ºbeanincreasingsequenceofdomainsconvergingto(cid:3);undersomerestrictions n onthissequenceitcanbeshownthatthesequenceofmeasures¹ub dSºconverges weaklyinM.(cid:3)N/(=thespaceoffiniteBorelmeasuresin(cid:3)N)toame@a(cid:2)snure(cid:6) 2M.@(cid:3)/ thatisindependentof¹(cid:3) º.Thislimitingmeasureisthemeasureboundarytraceofu. n If(cid:3)isofclassC2theharmonicfunctionucanberecoveredfromitsmeasurebound- arytraceviathePoissonintegral.IfthedomainismerelyLipschitz,thePoissonkernel mustbereplacedbytheMartinkernel.(FormoredetailsseeSection1.3.) As a first step in our study of the trace problem for positive solutions of (4) we considermoderatesolutions.Apositivesolutionof(4) ismoderateifitisdominated byaharmonicfunction.ThefollowingresultisaconsequenceoftheHerglotztheorem. A positive solutionu is moderateif andonly if g ıu 2 L1.(cid:3);(cid:4)/. Every positive moderatesolutionpossessesaboundarytracerepresentedbyaboundedmeasure. Sofarthetrace problemforpositivesolutionsofthenonlinearequationappearsto besimilartothetraceproblemforpositiveharmonicfunctions.However,beyondthis similarity, the nonlinear problempresents two essentially new aspects. The first is a fact already mentionedbefore: ingeneral, there existpositivefinite measures on@(cid:3) thatarenotboundarytracesofanysolutionof(4).Thesecond:theequationmayhave positivesolutionsthatdonothaveaboundarytraceinM.@(cid:3)/. Bothaspectsarepresentinthebasicexamples(3).Inthecaseofpowernonlineari- tiesg.t/ D jtjqsignt,if q (cid:3) .N C1/=.N (cid:2)1/andN (cid:3) 2thereisnosolutionwith boundarytracegivenbyaDiracmeasure.Infactinthiscasethereisnosolutionwith anisolatedsingularity.Inotherwords,isolatedpointsingularitiesareremovable.(For detailsseeSubsection3.4.3and4.2.1.) ThesecondaspectoccurswhenevergsatisfiestheKeller–Ossermanconditiondis- cussedbelow.Thisconditionissatisfiedbypowernonlinearitiesforeveryq >1and bytheexponentialnonlinearity. J.B.Keller [60]andR.Osserman[96]providedasharpconditiononthegrowthof gatinfinitywhichguaranteesthatthesetofsolutionsof(4)isuniformlyboundedfrom aboveincompactsubsetsof(cid:3).Qualitativelytheconditionmeansthatthesuperlinear- ityofgatinfinityissufficientlystrong.Assumingthatthisconditionholdsuniformly withrespect tox 2 (cid:3),theyderivedana prioriestimate for solutionsof(4) interms of(cid:4).x/ D dist.x,@(cid:3)/.Thisestimateimpliesthatequation(4),inboundeddomains, possessesa maximal solution.If, inaddition,(cid:3) satisfies theclassical Wiener condi- tionthenthemaximalsolutionblowsupeverywhereontheboundary.(Ifg.x,0/D 0 theboundednessassumptiononthedomainisnotneeded.)A solutionthatblowsup everywhere onthe boundaryiscalled a largesolution.Evidently,large solutionsdo notpossesaboundarytraceinM.@(cid:3)/. viii Preface In Section 3.1 we show that every positive solution has a boundary trace that is givenbyanouterregular Borelmeasure; howeverthismeasureneednotbefinite.If thesolutionismoderatethisreducestotheboundarytracepreviouslymentioned.The boundarytrace (cid:5)N ofa positivesolutionuhasa singularsetF (possiblyempty)such that (cid:5)N is infinite on F while (cid:5)N is a Radon measure on @(cid:3)n F. The singular set is closed.Apointy 2 @(cid:3)issingular(relativetou)ify 2F andregularotherwise.The singularandregularboundarypointsaredeterminedbyalocalintegralcondition. A boundary trace (cid:5)N can also be represented by a couple .F,(cid:5)/ where F is the singularsetofthetrace and(cid:5)isaRadonmeasureon@(cid:3)nF.Thesetofallpositive measuresthatcanberepresentedinthismannerisdenotedbyB .Asolutionwhose reg boundarytraceisoftheform.F,0/iscalledapurelysingularsolution. Assumimg that the Keller–Osserman condition holds uniformly in (cid:3), for every compactsetF (cid:5)@(cid:3)thereexistsasolutionU thatismaximalinthesetofsolutions F vanishingon@(cid:3)nF (seeSection3.2).U iscalledthemaximalsolutionrelativeto F F.Inthesubcriticalcase,theboundarytraceofU is.F,0/.Inthesupercriticalcase, F the singular set of U – denotedby k .F/ – may be smaller than F. The maximal F g solutionsU playacrucialroleinthestudyoftheboundaryvalueproblem F (cid:2)(cid:2)uCg.x,u/D 0 in(cid:3) (5) uD (cid:5)N on@(cid:3) wheng 2 G and(cid:5)N 2 B . 0 reg InSection3.3wepresentageneralresultprovidingnecessaryandsufficientcondi- tionsforexistenceanduniquenessofsolutionsof(5)assumingthatgsatisfiesthelocal Keller–Ossermanconditionandtheglobalbarrierconditionandthat,foreveryx 2 (cid:3), g.x,(cid:4)/isconvex.(Seedefinitions3.1.9and3.1.10.)Theseconditionsaresufficientfor theexistenceofthemaximalsolutionU . F InSection3.4westudyproblem(5)whengisgivenby g.x,t/ D(cid:4).x/ˇjtjq(cid:2)1t, q >1, ˇ >(cid:2)2. (6) Assumingthat(cid:3)isasmoothdomainweshow:(i)Ag-barrierexistsateveryboundary pointandtheglobalbarrier conditionholdsand(ii)g issubcriticalifandonlyif 1<q <q .˛/:D.N CˇC1/=.N (cid:2)1/. c Next we apply the result of Section 3.3to problem (5) with g as aboveassuming thatqisinthesubcriticalrange.Weshowthat,undertheseassumptions: Problem(5)possessesauniquesolutionforevery(cid:5)N 2 B . reg Therefollowsadescriptionofthemainstepsintheproofofthisresult: I. Foreveryy 2@(cid:3)thereisauniquesolutionwithboundarytrace.¹yº,0/denoted byu1,y. Preface ix II. IfuisasolutionwithsingularboundarysetF thenforeveryy 2F, u(cid:3)u1,y. Usingthesetworesultsweshowthat: III. ForeverycompactF (cid:5)@(cid:3),themaximalsolutionU istheuniquesolutionwith F trace.F,0/. Theproofiscompletedbyestablishingthefollowing: IV. If,foreverycompactsetF (cid:5)@(cid:3),(5)hasauniquesolutionwithboundarytrace .F,0/thentheboundaryvalueproblemhasauniquesolutionforeverymeasure (cid:5)N 2 B . reg Twoparticularcasesoftheboundaryvalueproblem(5)havereceivedspecialattention intheliterature. Thefirstisthecaseoflargesolutionsalreadymentionedabove.Inthelanguageof boundarytraces, thesingularboundarysetofalargesolutionisthewholeboundary. In the case of Lipschitz domains, the global Keller–Osserman conditionimplies the existence of a large solution.However, in moregeneral domains,the maximal solu- tionmaynotblowupeverywhere ontheboundary.Therefore, insucha casea large solutiondoesnotexist. Thequestionofexistenceanduniquenessofalargesolutionundervariousassump- tionsongand(cid:3)hasbeenasubjectofintensestudy.Inadditiontoitsintrinsicinterest, thistopicisusefulindelineatingthelimitationsthatarenaturallyimposedonthegoals ofourstudyofgeneralboundaryvalueproblems. ThesubjectoflargesolutionsisdiscussedindetailinChapter5. Thesecondcasetoreceivespecialattentionisthatofsolutionswithisolatedsingu- larities. Ifthenonlinearityissubcritical then,foreveryy 2 @(cid:3)there existmoderate solutionswithisolatedsingularityaty.If,inaddition,ag-barrierexistsatythenthere existnon-moderatesolutionswithanisolatedsingularityaty.Suchasolutioniscalled a‘verysingularsolution’.Alternativelywesaythatthesolutionhasa‘strongisolated singularity’aty. Assumethatg issubcriticalandthatag-barrier existsaty 2 @(cid:3).Letu denote k,y thesolutionwithboundarytracekı .Fork >0thissolutionisdominatedbykP.(cid:4),y/ y (where P denotes thePoissonkernel); therefore it is a moderate solution.However, theexistenceofabarrieraty impliesthat u1,y D lim uk,y (7) k!1 isasolutionoftheequationwhichvanisheson@(cid:3)n¹yº.Evidentlythissolutionhasa strongsingularityaty.Theanalysisofthesetofsolutionswithstrongisolatedsingular- itiesplaysanimportantroleinthestudyofboundaryvalueproblemsinthesubcritical case. A questionofspecial interest isthe uniquenessof the verysingular solutionat