ebook img

Nonlinear Phenomena in the Ionosphere PDF

380 Pages·1978·5.548 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nonlinear Phenomena in the Ionosphere

Physics and Chemistry in Space Volume 10 Edited by J. G. Roederer, Fairbanks J. T. Wasson, Los Angeles Editorial Board: H. Elsasser, Heidelberg . G. Elwert, Tiibingen L. G. Jacchia, Cambridge, Mass. J. A. Jacobs, Cambridge, England N. F. Ness, Greenbelt, Md .. W. Riedler, Graz A. V. Gurevich Nonlinear Phenomena in the Ionosphere Translated by J. George Adashko With 76 Figures Springer-Verlag New York Heidelberg Berlin A. V. Gurevich P. N. Lebedev Physics Institute, USSR Academy of Sciences/ Moscow, USSR The illustration on the cover is adapted from Figure 63 ISBN 978-3-642-87651-6 ISBN 978-3-642-87649-3 (eBook) DOI 10.1007/978-3-642-87649-3 All righ ts reserved. No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag. ©1978 by Springer-Verlag New York Inc. Softcover reprint of the hardcover 1st edition 1978 The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. 9 8 7 6 5 4 3 2 I Library of Congress Cataloging in Publication Data. Gurevich, A1eksandr Viktorovich. Nonlinear phenomena in the ionosphere. (Physics and chemistry in space ; 10) Translation of Nelineinye Iavleniiil v ionosfere. Added t.p.: Nelineinye Iavlenila v ionosfere. Includes bibliographical references. I. Ionospheric radio wave propagation. 2. Non-linear theories. 3. Plasma (Ionized gases) I. Title. II. Title: Nelineinye Iavlenila v ionosfere. III. Series. QC801.P46 vol. 10 [QC973.4.16) 523.01',8 [551.5'27)78-7280 Preface Nonlinear effects in the ionosphere (cross modulation of radio waves) have been known since the 1930s. Only recently, however, has the rapid increase in the power and directivity of the radio transmitters made it possible to alter the properties of the ionosphere strongly and to modify it artificially by applying radio waves. This has revealed a variety of new physical phenomena. Their study is not only of scien tific interest but also undisputedly of practical interest, and is presently progressing very rapidly. This monograph is devoted to an exposition of the present status of theoretical research on this problem. Particular attention is paid, naturally, to problems in the development of which the author himself took part. It is my pleasant duty to thank V. L. Ginzburg, L. P. Pitaevskii, V. V. Vas'kov, E. E. Tsedilina, A. B. Shvartsburg, and Va. S. Dimant for useful discussions and for valuable remarks during various stages of the work on the problem considered in this book. Contents 1. Introduction . . . . . . . . . . . . . . . . . . . 1.1. Data on the Structure of the Ionosphere. 1 1.2. Features of Nonlinear Phenomena in the Ionosphere 4 1.2.1. Nonlinearity Mechanisms. . . . . . . . . . . . 4 1.2.2. Qualitative Character of Nonlinear Phenomena. 7 1.2.3. Brief Historical Review. . . . . . . . . . . . . . . 11 2. Plasma Kinetics in an Alternating Electric Field . . . . . . . .. 14 2.1. Homogeneous Alternating Field in a Plasma (Elementary Theory). . . . . . . . . . . . . . . . . . . . 14 2.1.1. Electron Current-Electronic Conductivity and Dielectric Constant. . . . . . . . . . . . . . . 15 2.1.2. Electron Temperature . . . . . . . . . . . . . 19 2.1.3. Ion Current-Heating of Electrons and Ions 29 2.2. The Kinetic Equation . . . . . . . . . . . . . . . . . 34 2.2.1. Simplification of the Kinetic Equation for Electrons. . . . . . . . . . . . . . . . . . . . . 35 2.2.2. Transformation of the Electron Collision Integral. 40 2.2.3. Inelastic Collisions . . . . 50 2.3. Electron Distribution Function. 58 2.3.1. Strongly Ionized Plasma. 59 2.3.2. Weakly Ionized Plasma . 69 2.3.3. Arbitrary Degree of Ionization-Concerning the Elementary Theory. . . . . . . . . . . . 82 2.4. Ion Distribution Function . . . . . . . . . . . 87 2.4.1. Simplification of the Kinetic Equation. 87 2.4.2. Distribution Function . . . . . 88 2.4.3. Ion Temperature, Ion Current. . . . . . 91 VIII Contents 2.5. Action of Radio Waves on the Ionosphere 94 2.5.1. Ionization Balance in the Ionosphere. . . 94 2.5.2. Effective Frequency of Electron and Ion Collisions-Fraction of Lost Energy . . . 99 2.5.3. Electron and Ion Temperatures in the Ionosphere . . . . . . . . . . . . . . . . . 106 2.5.4. Heating of the Ionosphere in an Alternating Electric Field . . . . . . . . . . . . . . . . 108 2.5.5. Perturbations of the Electron and Ion Concentrations. . . . . . . . . . . . . . . . 111 2.5.6. Artificial Ionization of the Ionosphere- Heating of Neutral Gas . . . . . . . . . . 113 3. Self-Action of Plane Radio Waves . . . 125 3.1. Simplification of Initial Equations. 125 3.1.1. Nonlinear Wave Equation. . 125 3.1.2. Nonlinear Geometrical Optics of a Plane Wave. 127 3.2. Effect of Nonlinearity on the Amplitude and Phase of the Wave . . . . . . . . 129 3.2.1. Self-Action of a Weak Wave . . . . 129 3.2.2. Self-Action of a Strong Wave. . . . l32 3.2.3. Self-Action of Waves in the Case of Artificial Ionization . . 144 3.3. Change of Wave Modulation. . . . . . . . . 147 3.3.1. Weak Wave. . . . . . . . . . . . . . . 147 3.3.2. Change of Amplitude Modulation of Strong Wave. . . . . . . . . . . . . . . 150 3.3.3. Phase Modulation . . . . . . . . . . . . 157 3.3.4. Nonlinear Distortion of Pulse Waveform 158 3.4. Generation of Harmonic Waves and Nonlinear Detection . . . . . . . . . . . 161 3.4.1. Frequency Tripling. . . . . . . . . . . . . . 161 3.4.2. Nonlinear Detection. . . . . . . . . . . . . 164 3.5. Self-Action of Radio Waves in the Lower Ionosphere. 165 Contents IX 4. Interaction of Plane Radio Waves. 176 4.1. Cross Modulation. . . . . . . 176 4.1.1. Weak Waves. . . . . . 176 4.1.2. Strong Perturbing Wave. 183 4.1.3. Resonance Effects near the Electron Gyrofrequency . . . . . . . . . 188 4.2. Interaction of Unmodulated Waves. . . . . 191 4.2.1. Interaction of Short Pulses . . . . . . 191 4.2.2. Change in the Absorption of a Wave Propagating in a Perturbed Plasma Region . . . . . . . . 194 4.2.3. Generation of Waves with Combination Frequencies. . . . . . . . . . . . . . . . . 196 4.3. Radio Wave Interaction in the Lower Ionosphere. 198 4.3.1. Cross Modulation . . . . . . . . . . . . . . . 198 4.3.2. Fejer's Method. . . . . . . . . . . . . . . . . 201 4.3.3. Nonstationary Processes in the Interaction of Strong Radio Waves . . . . . . . . . . . . 204 5. Self-Action and Interaction of Radio Waves in an Inhomogeneous Plasma . . . . . . . . . 207 5.1. Inhomogeneous Electric Field in a Plasma 207 5.1.1. Fundamental Equations . . . . . . . 207 5.1.2. Distribution of Density and Temperatures in Plasma. . . . . . . . . . . . . . . . . . . . 216 5.2. Kinetics of Inhomogeneous Plasma. . . . . . . 221 5.2.1. Kinetic Coefficients. Elementary Theory. 221 5.2.2. Kinetic Theory . . . . . . . . . . . . . . . 225 5.2.3. Fully Ionized Plasma. . . . . . . . . . . . 234 5.3. Modification of the F Region of the Ionosphere by Radio Waves. . . . . . . . . . . . . . . . . . . 235 5.3.1. Modification of the Electron Temperature and of the Plasma Concentration . . . . . . . . . 235 5.3.2. Radio Wave Reflection Region. . . . . . . . 245 5.3.3. Growth and Relaxation of the Perturbations 253 x Contents 5.4. Focusing and Defocusing of Radio Wave Beams. 258 5.4.1. Nonlinear Geometrical Optics 259 5.4.2. Defocusing of Narrow Beams. . . . . . . . 264 5.4.3. Mutual Defocusing. . . . . . . . . . . . . . 275 5.4.4. Thermal Focusing in the Lower Ionosphere. 278 6. Excitation of Ionosphere Instability . 282 6.1. Self-Focusing Instability . . . . 283 6.1.1. Spatial Instability of a Homogeneous Plasma. 283 6.1.2. Instability in the Wave-Reflection Region. . . 291 6.2. Resonant Absorption and Resonance Instability. . . 298 6.2.1. Langmuir Oscillations in an Inhomogeneous Plasma. . . . . . . . . . . . . 299 6.2.2. Excitation of Plasma Waves. . . . . . . 305 6.2.3. Resonance Instability . . . . . . . . . . 311 6.2.4. Absorption of Ordinary Radio Waves. 315 6.3. Parametric Instability. . . . . . . . . . . . . . 321 6.3.1. Langmuir Oscillations of a Plasma in an Alternating Field . . . . . . . . . . . 322 6.3.2. Parametric Excitation of Langmuir Oscillations. 329 6.3.3. Parametric Instability in the Ionosphere. 335 6.3.4. Dissipative Parametric Instability. 340 References . . . . 353 Principal Symbols 363 Subject Index. . . 367 1. Introduction 1.1. Data on the Structure of the Ionosphere The ionosphere is a part of the earth's upper atmosphere, extending in height from 60 to about 1000 km. In this region, the atmosphere is a partly ionized gas or plasma. The processes that occur in the ionospheric plasma are closely connected with the wave and corpuscular radiation of the sun, with events in the magnetosphere and variation of the earth's magnetic field, with motion of the upper atmosphere, and so on. This is why the ionosphere varies so greatly with time (with the time of day, with the season of the year, with the II-year cycle of solar activity) and with geographic latitude. The ionosphere is a transition layer between the nonionized upper atmosphere and the fully ionized hydrogen plasma of the magnetosphere. The structure and properties of the ionosphere, therefore, vary rapidly with height. The lower region of the ionosphere, at heights z = 50 to 80 km, is usually called the 0 layer. This layer is ionized in day time. The region at heights from 80 to 130 km is called the E layer, and that above 150 km the F layer. A distinction is sometimes made between the F layer, up to 1 approximately 250 km, and the F 2 layer, above 250 km. A model of the ionosphere at medium latitudes and at average solar activity is represented in Tables 1 and 2 (Harris et aI., 1962; Al'pert et aI., 1967). This model will be used here in estimates and numerical calculations. The density of the upper atmosphere, as seen from Table 1, decreases rapidly with height. The molecular composition varies little up to 100- 110 km°. In the 100-120 km region, dissociation of the oxygen molecule, O2 -> + 0, takes place. The nitrogen dissociates at ~ 300 km. At 500- 600 km, the relative helium concentration increases rapidly, and the same occurs for hydrogen at z ~ 1000 km. At z ~ 1500 km, the hydrogen atoms H are in the majority. The electron and ion densities increase up to 300-400 km (Table 2) and then decrease quite slowly at z > 400 km. The degree of plasma ionization, which is very low at small heights (N/Nm = 10-8 - 10-4 at 2 Introduction Table 1. Molecular composition of the ionosphere Day-time (12:00 noon), concentration Nm, cm-3 z, Total km N2 O2 He 0 H Nm T,K 60 5.5· 1015 1.5· 10'5 7.0.10'5 270 70 1.6.10'5 4.2 . 1014 2.0· lO'S 200 80 2.3· 10'4 6.2· 1013 2.9· 10'4 180 90 3.1 . 1013 8.2.10'2 3.9· 1013 190 100 7.7· 10'2 1.9· 1012 5.7· 107 2.0.10" 6.2.104 9.6· 10'2 210 110 1.4 . 10'2 3.5 . 1011 3.8· 107 1.4.1011 5.3 . 104 1.9.10'2 270 120 5.8· 1011 1.2· 1011 2.5· 107 7.6· 10'0 4.3· 104 7.8· 1011 360 130 2.0.10'1 3.8. 10'0 1.7 . 107 3.7· 10'0 3.2 . 104 2.8· 1011 460 150 4.8· 10'0 7.2· 109 1.0· 107 1.35· 10'0 2.1 . 104 6.9.1010 670 200 4.8· 109 5.9· 108 4.9.106 3.0· 109 1.3 . 104 8.4· 109 1070 250 1.1 . 109 1.2· 108 3.4· 106 1.3 . 109 1.0 . 104 2.5· 109 1250 300 3.2· 108 2.7· 107 2.7· 106 5.9· 108 9.3· 103 9.3· 108 1330 400 3.5· 107 2.2 . 106 1.9 . 106 1.6· 108 8.3· 103 2.0· 108 1390 500 4.4 . 106 2.1 . 105 1.4· 106 5.0· 107 7.6· 103 5.6· 107 1400 600 5.9· 105 2.1.104 1.0· 106 1.6· 107 7.1 . 103 1.7 . 107 1400 700 8.5· 104 2.3· 103 8.0· 105 5.2· 106 6.6· 103 6.0· 106 1400 800 1.3 . 104 2.7· 102 6.1 . 105 1.8· 106 6.2 . 103 2.4· 106 1400 900 2.1 .103 3.3.10' 4.7· 105 6.2· lOS 5.8· 103 1.1 . 106 1400 1000 3.5· 102 4.3 3.7· 105 2.2· 105 5.4 . 103 6.0· 105 1400 Night-time (midnight), concentration N m' em -3 z, Total km N2 O2 He 0 H Nm T,K 60 5.5· 1015 1.5 . 1015 7.0.10'5 270 70 1.6· 1015 4.2.10'4 2.0· 1015 200 80 2.3· 10'4 6.2· 1013 2.9· 10'4 180 90 3.1 . 1013 8.2· 10'2 3.9· 1013 190 100 7.7.10'2 1.9· 1012 5.7· 107 2.2· 1011 6.2· 104 9.6· 1012 210 110 1.4.1012 3.5· 1011 3.8· 107 1.4.1011 5.3· 104 1.9.10'2 270 120 5.8.10" 1.2 . 1011 2.5· 107 7.6· 10'0 4.3· 104 7.8 . 10" 360 130 2.0· 1011 3.7· 10'0 1.7 . 107 3.7· 10'0 3.2. 104 2.7· lO" 470 150 4.8· 10'0 7.0· 109 1.0· 107 1.4· 10'0 2.2 . 104 6.9· 10'0 650 200 4.7· 109 5.6· 108 5.9· 106 3.2· 109 1.6· 104 8.4 . 109 850 250 7.7· 108 7.1 . 107 4.3 . 106 1.2· 109 1.4· 104 2.0.109 910 300 1.4· 108 1.0· 107 3.3 . 106 4.4.108 1.3 . 104 5.9· 108 930 400 6.0.106 2.8· 105 2.1 . 106 7.0· 107 1.1 . 104 7.8· 107 940 500 2.8· 105 8.6· 103 1.3 . 106 1.2· 107 1.0· 104 1.3 . 107 950 600 1.5· 104 2.9· 102 8.7· 105 2.3· 106 9.0· 103 3.2· 106 950 700 8.4 . 102 1.1 . 10' 5.8· 105 4.4 . 105 8.1 . 103 1.0· 106 950 800 5.1 . 10 4.6 ·10-1 3.9· 105 8.9· 104 7.3 . 103 4.8.105 950 900 3.4 2.1.10-2 2.6· 105 1.9· 104 6.7· 103 2.8· 105 950 1000 2.4 . 10-1 1.0.10-3 1.8· 105 4.2· 103 6.1 . 103 1.9 . 105 950

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.