ebook img

Nonlinear Phenomena in Physics: Proceedings of the 1984 Latin American School of Physics, Santiago, Chile, July 16–August 3, 1984 PDF

447 Pages·1985·10.54 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nonlinear Phenomena in Physics: Proceedings of the 1984 Latin American School of Physics, Santiago, Chile, July 16–August 3, 1984

3 Volume 1 Fluctuations and Sensitivity in Nonequilibrium Systems Editors: W. Horsthemke and D. K. Kondepudi Volume 2 EXAFS and Near Edge Structure III Editors: K.O.Hodgson, B.Hedman, and J.E.Penner-Hahn Volume 3 Nonlinear Phenomena in Physics Editor: F. Claro Springer Proceedings in Physics is a new series dedicated to the publication of conference proceedings. Each volume is produced on the basis of camera-ready manuscripts prepared by conference contributors. In this way. publication can be achieved very soon aiterthe conference and costs are kept low; the quality of visual presentation is. nevertheless. very high. We believe that such a series is preferable to the method of publishing conference proceedings in journals. where the typesetting requires time and considerable expense. and results in a longer publication period. Springer Proceedings in Physics can be considered as a journal in every other way: it should be cited in publications of research papers as Springer Proc.Phys., followed by the respective volume number. page and year. Nonlinear Phenomena in Physics Proceedings of the 1984 Latin American School of Physics, Santiago, Chile, July 16-August 3, 1984 Editor: F. Claro With 110 Figures Springer-Verlag Berlin Heidelberg New York Tokyo Professor Francisco Claro, Ph. D. Pontificia Universidad Catolica de Chile, Facultad de Fisica, Casilla 114-D, Santiago, Chile ISBN-13: 978-3-642-93291-5 e-ISBN-13: 978-3-642-93289-2 001 10 1007/978-3-642-93289-2 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, reuse of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under§ 54 oftheGerman CopyrightLaw where copies are made forotherthan private use, a fee is payableto "Verwertungsgesellschaft Wort", Mu nich. © Springer-Verlag Berlin Heidelberg 1985 Softcover reprint of the hardcover I st edition 1985 The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and there fore free for general use. 2153/3130-543210 Preface It was almost four hundred years ago that Galileo wrote in Il Saggiatore that the "Book of Nature is written in mathema ti ca 1 characters". Thi s sentence, i nspi red at the dawn of physics has proved with the passage of time to contain a deep truth and also a warning: in order to understand Nature, first we must learn to read mathema tical characters. Indeed, writing physical law in such characters has proved not as hard as unraveling the content of the resulting equations. In particular, the lack of knowledge in the field of nonlinear mathematics has been a severe limita tion in the past. Thus the solution to equations such as the Navier-Stokes equation in fluid dynamics has remained elusive. The recent advent of fast computers and some important analytical and numerical results in the study of bifurcations and nonlinear waves have encouraged work both in theory and experiment involving non linear phenomena. An explosive growth in the specialized literature penetrating most research areas in physics in the last few years has ensued. This book contains the most recent advances in nonlinear physics in various fields including astrophysics, gravitation, particle physics, quantum optics, fluid dynamics and the mathematics underlying the phenomena of chaos and nonlinear waves. It presents a selection from the lectures delivered at the XXI '_atin American School of Physics held in Santiago, Chile in July-August 1984 (EtAF'84). This School, at tended by over 100 physicists from all parts of America, covered the subject matter NONLINEAR PHENOMENA IN PHYSICS trying to balance information on the development of new mathematical methods with the recent phenomenology most relevant to the subject. The book reflects this spirit, together with the aim of publishing material that is new and not contained in available review articles or books. Authors are renowned specialists in each field,selected by the Organizing Committee of ElAF'84 consider ing not only their expertise but also their ability to communicate. They were asked to write an easy to read text that would be of use not only to specialists but also to newcomers to the field and to advanced students. We feel these goals were achie ved and that this volume will prove to be valuable and timely. I would like to thank all those who made ElAF'84 possible. First, I owe special gratitude to the Organizing Committee: Drs. M.C. Depassier, 1_. Gomberoff, D. Gott lieb, F. lund, M. Orszag, H. Quintana, I. Schmidt, I. Schuller and E. Tirapegui, who assisted me in all important decisions and many tasks. Then, my thanks to Ms. Angela Bau who combined extreme efficiency and charm to make all practical matters work, and Ms. tiliana Pineda for her patience and valuable assistance in preparing the School and editing this book. Several colleagues and local students and friends contri buted in vari ous ways to the success of ElAF '84 inc 1 udi ng L Arroyo, Z. Bar ticevic, D.R. Hofstadter, J. Krause, M. I_oewe, I. Olivares, M. Pacheco, R. Ramirez, S. Rios, R. Rojas and V. Tapia. Finally, the sponsors: Organization of American States (O.A.S.), U.N.E.S.C.O., National Science Foundation, Committee on Science and Technology in Developing Countries, Facultad de Ingenieria and Instituto de Mu sica (Catholic University of Chile), International Centre for Theoretical Physics in Trieste, Italy, C.E.R.N., European Southern Observatory (ESO), Service Culturel et de Cooperation Scientifique et Technique of France, the British Council, Cerro Tololo Interamerican Observatory, Argonne National '_aboratory U.S.A., CONICYT Chile, C.N.P.Q. Brasil, the Chilean Academy of Sciences, Universidad F. Santa Maria publi shing office, DERCO S.A. Chile, CORPORA S.A. Chile, and Centro de Perfecionamiento del Magisterio, Chile. In the name of the Chilean Society of Physics, organizer of EtAF'84, I would like to thank them all for their generosity. Santiago October 1984 Francisco Claro v Contents Part I Mathematical Methods and General Dynamics for Golden Mean Rotation. By M.J. Fei genbaum ....•........•......... 2 1. I ntroduc ti on • . . . . • • . . . . . . . . . . . . . . • . . . . • . . . . . • • . . . . . . . . . . • . . . . . . . • . . • . . 2 2. Golden Mean Circle Maps .......•.......••..•..•........•....•.......... 3 3. Trajectory Scaling .......•.•.•.........•..•.••...•......•....•........ 5 4. The Golden Mean Power Spectrum ...•....•......•...•....•.....•.....•... 9 5. Concl usion ..•........••....•.....•................•................... 15 Nonlinear Phenomena in Dissipative Systems. By P. Coull et (Wi th 33 Fi gures) 16 1. Stability Analysis of Equilibria .......•...••••..............•...••... 16 2. Steady Non Equilibrium Behavior and Pattern Formation ..•..........•... 22 3. Time Dependent Periodic Phenomena ...............•......•.....•........ 36 4. Quasiperiodic Phenomena ............................................... 47 5. Chaoti c Phenomena • • . . . . • • . . . • • . . . . . . . • . • . . . • . . • . • . . . . . • . . . . . • • . . . . . . . . 53 References . . . . • . . . . . . . . • . . . . . . . • . . . . . . . . . . • . . . . . . . . • . . . . . • . . • . . . . . . . . . . . . 67 Statistical Mechanics of the sine-Gordon Field: Part I. By R. K. Bull ough •..•.•... 70 1. I ntroduc ti on . . . . . . • . . . . . . . • . . . . . . . . . . . . . . . . . . . • . . • . . . • . • . . . . . . . . . . • . . . 70 2. Elementary Aspects of Action-Angle Variables: Action-Angle Variables for the Klein-Gordon Equation ..•...........•....•••......•......•..•...... 72 3. The Ferromagnetic CsNiF3; A Physical Example of the sine-Gordon Equation 76 4. Complete Integrability of the Classical sine-Gordon Equation .......... B2 5. Functional Integrals for the Partition Function Z ................•.... 91 6. The Partition Function for the l.inear Klein-Gordon Equation ....•...... 94 7. Transfer Integral Method for the Classical Partition Function of the si ne-Gordon Eq uati on . . . . . . . . . . . . . . . . . . . • . . . . . • . . . . . . . . • • . . . . . . . . . . . . . . 96 Statistical Mechanics of the sine-Gordon Field: Part II By R.K. Bullough, D.J. Pilling, and J. Timonen .....•...............•........ 103 B. Evaluation of the Partition Function Z for the sine-Gordon Field in Terms of Action-Angle Variables: Construction of the Measure ......•...•..•.. 103 9. Floquet Theory for Periodic Problems ..••..............•...•........... 105 10. Partition Function for the sinh-Gordon Equation .••.•..••..•.....•.....• lOB 11. Sine-Gordon Statistical Mechanics Without Phonon-Phonon Phase-Shifts 110 12. Sine-Gordon Statistical Mechanics with Phonon-Phonon Phase-Shifts I ncl uded ..••...................•........................•............. 113 13. Classical Fermions .•......••................................•......... 114 14. Unsol ved Probl ems .... , . . . . . • . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . •• . . . . 116 15. Conclusion .....••••......•...•......•.•.....•........•.•.............. 117 Appendices ..••...•..••••...•.•••. " ..... .•..•...•• ..•.... .•.•.... . .... .. .. lIB References . . . . . . • . . . . • • . . . . . . . . • . • . . . • • . . . . . . . . • . . . . . . . . . . . . . . . . • . . . . . . . . . 126 Probabilistic Cellular Automata. By B.A. Huberman (With 1 Figure) .•• •••......•. 129 1. I ntroduc ti on . . . . • • . . . . . . . . • • • • . . . . . . • • • • . . . . • • • . . . . . . . . • . . . . . . . . . . . . . . 129 2. Automa ta Dynami c s . . . . . . . . . . • . . . . . . . . . • • . . • . • • • . . . . . . . . . . . . . . . . . . . . . . . . 130 3. The Stick-Slip Behavior of Faults ..........••.•.......•.....•......... 133 References . . . • • .. . . . . .. • . . . . . . . • . . . . . . . • •. . . . . . • • • . . • . •. . . • • . . . . . . •. . . . . . 136 VII Part II Quantum Optics Chaos, Generalized Multistability and Low Frequency Spectra in Quantum Optics By F. T. Arecchi (With 18 Fi gures) . . . . . . . . • . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 140 1. Introduction: Order and Chaos in Quantum Optics ....................... 140 2. Physics of Stimulated Emission Processes .............................. 145 3. The Maxwell-Bloch Equations ........................................... 150 4. Onset of Chaos, Generalized Multistability and tow Frequency Spectra in Quantum Optic s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 From Optical Bistability to Chaos. By H.M. Nussenzveig (With 9 Figures) ........ 162 1. I ntroduc ti on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 2. The Ring Cavity ....................................................... 163 3. The Maxwell -Bloch Equati ons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 4. The Linear Approximation ...... ........................................ 171 5. Opti cal Bi stabil ity ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 6. Semiclassical Theory: Steady State .................................... 176 7. Di scussi on of the State Equati on ...................................... 182 8. Linear Stability Analysis ............................................. 187 9. Dispersive Optical Bistability ........................................ 195 10. Quantum Theory of Optical Bistabi1ity ................................. 198 11. Spec trum of the Transmi tted ti ght . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 204 12. Photon Stati stics .,. . . . . . . . . . . .. .. . . . . . . . . . . .. . . . .. . ... . . . .. .. . . . . . . . . 207 13. Si de Mode I nstabil ities . . . . . . . .. . . . . . . .. . . . . .. .. .. . . . . . . . . . .. . . . .. . . .. 210 14. Mu1tistabi1ity ........................................................ 215 15. Ikeda Instability. Appraoch to Chaos .................................. 220 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 Part III Fluids Recent Developments in Rayleigh-Benard Convection and I nterface Dynamics By A. Li bchaber (With 6 Figures) ............................................ 228 1. The Ray1 ei gh-Benard I nstabi 1 ity ..............................•........ 228 2. Fluid-Fluid Interface, the Saffman-Taylor Problem ..................... 231 3. Solid-liquid Interface, from Cells to Dendrites ....................... 234 References ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 Part I V Astrophysics and General Relativity Nonlinear Problems in Stellar Dynamics. By G. Contopoulos (With 8 Fi gures) .... 238 1. Introduction ........................._ ................................. 238 2. Stellar Motions on the Plane of Symmetry of a Spiral Galaxy ........... 239 3. Stellar Motions on the Meridian Plane of an Axisymmetric Galaxy ....... 243 4. Transition from Ordered to Stochastic Motion .......................... 244 5. Bifurcations and Gaps ................................................. 247 6. Three-Dimensional Systems ............................................. 249 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Solitons in General Relativity and Supergravity. By G.W. Gibbons ............ 255 Lecture 1: Black Hole Solitons in Ungauged Extended Supergravity ......... 255 1. The Sol i ton Concept for Gravity ....................................... 255 2. Absence of Solitons Without Horizons .................................. 256 3. Black Holes and the Breakdown of Supersymmetry at Finite Temperature 258 4. Extended Supersymmetry: Central Charges and Multiplet Shortening ...... 262 5. Black Holes in N=2 Supergravity: Charge Without Charge ................ 264 6. The Bogomo 1 ny I nequa 1 ity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 VIII 7. The Zero Modes . • • . . . • . . . . . • • • . . . . • • . • . • . . . . . • • . . • . • . . • . . • . . . . . • . . . . . . • 267 8. Conclusion ..•.•.•...••....•...•.••..•.....••....•....••.•.....•.....•• 268 References .. • . . • . • . • • . . . . . . . . • . •• . .. . . .• . . • . •. . . . . •• . . . . . . •• . . . . . . . . . • • •• 268 Lecture 2: Supersymmetric Monopoles in Kaluza-Klein Theory •.••••.••.•••• : 270 1. Kaluza-Klein Theory .•••.••••.•....••...••.•.••••.•..•••••....••..•..•. 270 2. Gross-Perry-Sorkin Monopol es .•.••....• .•...•••.•.. .... •••. .. .•••. ..... 271 3. N = 8 Supergravity in 5-Dimensions ...••.•.•........•..•.•.•..••...••.. 273 4. Supersymmetries and Zero Models .•..•....•.•..•.•..........••......•.•• 275 5. Electric Magnetic Duality .•••.•••.•••..••••.••••..•.•..••••••.••..•..• 276 6. Monopol e-pyrgon Dual ity .••••••••.•...•...••.•••••••..•..•..•••••....••• 278 References . • . . . • . • . . . . • • • • . . . • • • • • . • . . . . . . . . . . . . . . . • . . . • • • • . . . . . . • • . • . • • . 279 The Dynamics of Spacetime Curvature: Nonlinear Aspects By K. S. Thorne (Wi th 6 Fi gures) . • • • . . . . . . . . •• . • . • . • . . . . . . . • • . . . . • • . . • • . • . • • 280 1. I ntroducti on • • •• .. . • .• . . . • • • . . • . .• .•. . •• • . • . • . . . •. . . •• . • • . . . . • • ••. . . .• 280 2. Gravitational Waves .•....•.•.•......•••.••.....•..•.......•••.••..•••• 281 3. Geons . • . • • • • . • • • . . • . . . • . . . • . . . • . . . . . . . • . • . • . . . . . • • • . . . • . . . . • • • • • . . • • . . 283 4. Black Holes ...•.....•.••.••.•.•..••...•.•.......•.•...•.•..•.•....•••. 284 5. White Holes .•••.•..••...•..•••••..•••••••.•.•••••.•.•••••..•...••••••• 285 6. Wormholes ...•......•....•.••••..••.....•.•..•.•.•......•...•••....•.•. 286 7. Singularities .•....•.•...•.•...........•....•...•....•.•.•.•.•.•...••. 288 8. Techniques of Future Research: Soliton Theory and Numerical Relativity. 290 References . • . • . . • . • . • . . • • . . . . • • • • • • . . . . . . • . . . • . . . . . • . . • . • . • . • • . . . • • . . . . • . 290 Part V High Energy Physics Unification, Supersymmetry and Cosmology. By J. E1Hs ......•.•••.••.......•. 294 1. The Standard Model . . . •• . . . • • • . . • • . . . .. . • • .. . . . . . •. • •• • • • • .. . . • .•. • . • • • 294 2. From the Standard Model to Grand Unification ...••••••.•••........•.••. 299 3. Simple GUT Models ..••.•...•.•.•••.•................•...•.•.•.•••.•..•• 303 4. New Interactions in GUTs ..••.•..•.•.•..•.•..•.•.•...••••..••...•..••.. 308 5. The Hierarchy Problem •.••••••.••••.....•........•..•.•..•.....••.•.••• 313 6. Supersymmetri c GUTs . • .•. . • . •• • . . . •• •• •• • • . • .• •••. • •• . ••• . •• • •••• . . ••. . 317 7. Supersymmetry at Low Energies •••••.•...•.........•••...........•..•..• 322 8. Supersymmetry and CERN Collider Data ..•...•......•••.••••...•.•..••.•• 327 9. GUTs and Cosmology .•••••.••••.•••.....•••.•...••.•••.••...•••.••..•••• 332 10. Inflation and Supersymmetric Cosmology •.•.•....•.••.•.•.•.••.•••....•• 336 References • . . • • • • • • . . . • . • . . . . • . • . • . . • . . . • • . . . . • . • . . • • . . . • . . . . . . . . . • • . . . • . . 340 Lectures on Quark Flavor Mixing in the Standard Model By E. de Rafael (With 29Figures) •.•.•••••....•.•.••.•••••.•••..•••••.•.••••• 344 1. Overview of the Standard Model ...•••••..•.•....•..••.••.•....••..•.•.• 344 2. Phenomenological Determination of the Cabibbo-Kobayashi-Maskawa Matrix El ements . . • . . .• . •• . • . . . . . • . • . . . . . . . . . . . . . . . • . . . . • . . . . • . • • . . • • • • . . • . . •• 360 3. The ~s = 1 Effective Hamiltonian for Non-Leptonic Decays in the Standard Model •• .. ..•.•..•.. . .... .....•. .. ....••..••.. ..•.•..••.••• ...••. ..•••. 374 4. Violation of CP-Invariance in the St~ndard Model •..••..••.•••••.•••.•• 405 References . • • • . . • • • . . . • . . • • • . . • • . . . . • • • • • • • • • • . . . • • . . . . • • • • • • • . • • • • . . • . . . 434 Index of Contributors .•••......•••.••.......••.•••...••...•........•••..••.. 441 IX Part I Mathematical Methods and General Dynamics for Golden Mean Rotation Mitchell J. Feigenbaum Cornell University, Physics Department, Ithaca, NY 14853, USA Trajectory scalings for golden mean quasiperiodic motion are determined from its renormalization group. The power spectrum is then computed in an accurate approximation. I. Introduction This paper, of a partially pedagogic nature, assumes some familiarity with the renormalization group methods for deterministic systems. Indeed, it represents a (not entirely trivial) reworking of the tools developed for period doubling in a somewhat more complex setting. Background material will be mentioned in allusion. Basically, we have the following situation. A high magnification of appropriately high iterates of a mapping on the circle near a special point is an arbitrarily accurate approximation to a fixed point (function) of a transformation (the renormalization group transformation) on a space of (actually ~airs of) functions. Emphatically, high iterates of the map everywhere on the circle are not well approximated. The power spectrum (as an example of a general dynamical object of study) is a transform of the entire motion, and so the question arises as to how knowledge about some particular point can suffice to determine such an object. Because (modulo a proviso to follow) indeed it is possible to accomplish just this. The proviso is that a number of measurements must be provided as initial data, and the better the desired result, the more such measurements must be provided. Rather than a limitation that could be removed by a better method, this point of formulating a "new" initial data problem represents a significant insight into what are reasonable physical questions, and what should be the significant fundamental "variables" of a physical situation characterized by a large degree_of irregularity and hence embracing large amounts of information. Thus, a "better" answer can probably require calculation approaching, if not identical to, the actual simulation of the precise process, and so a computation esthetically pleasing to only a computer. That is, it offers no "physical" insight and is "understanding" insofar as the witnessing of an event can be equated to its understanding. The method of solution presented here is that of the "trajectory scaling function" originally implemented for the determination of the dynamical properties 2

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.