ebook img

Nonlinear Partial Differential Equations with Applications (International Series of Numerical Mathematics) PDF

485 Pages·2013·4.452 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nonlinear Partial Differential Equations with Applications (International Series of Numerical Mathematics)

ISNM International Series of Numerical Mathematics Volume 153 ManagingEditors: K.-H.Hoffmann,München, Germany G.Leugering, Erlangen-Nürnberg, Germany AssociateEditors: Z.Chen,Beijing,China R.H.W.Hoppe,Augsburg, Germany/Houston, USA N.Kenmochi,Chiba,Japan V.Starovoitov, Novosibirsk,Russia HonoraryEditor: J.Todd, Pasadena, USA† Forfurthervolumes: www.birkhauser-science.com/series/4819 Tomáš Roubí(cid:254)ek Nonlinear Partial Differential Equations with Applications Second Edition Tomáš Roubíček Mathematical Institute Charles University Sokolovská 83 186 75 Praha 8 Czech Republic and Institute of Thermomechanics of the ASCR Dolejškova 5 182 00 Praha 8 Czech Republic and Institute of Information Theory and Automation of the ASCR Pod vodárenskou věží 4 182 08 Praha 8 Czech Republic ISBN 978-3-0348-0512-4 ISBN 978-3-0348-0513-1 (eBook) DOI 10.1007/978-3-0348-0513-1 Springer Basel Heidelberg New York Dordrecht London Library of Congress Control Number: 2012956219 Mathematics Subject Classification (2010): Primary: 35Jxx, 35Kxx, 35Qxx, 47Hxx, 47Jxx, 49Jxx; Secondary: 65Nxx, 74Bxx, 74Fxx, 76Dxx, 80Axx © Springer Basel 2005, 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer Basel is part of Springer Science+Business Media (www.birkhauser-science.com) To the memory of professor Jindˇrich Neˇcas Contents Preface xi Preface to the 2nd edition xv Notational conventions xvii 1 Preliminary general material 1 1.1 Functional analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Normed spaces, Banach spaces, locally convex spaces . . . . 1 1.1.2 Functions and mappings on Banach spaces, dual spaces . . 3 1.1.3 Convex sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.4 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.5 Fixed-point theorems . . . . . . . . . . . . . . . . . . . . . 8 1.2 Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.1 Continuous and smooth functions. . . . . . . . . . . . . . . 9 1.2.2 Lebesgue integrable functions . . . . . . . . . . . . . . . . . 10 1.2.3 Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3 Nemytski˘ı mappings . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.4 Green formula and some inequalities . . . . . . . . . . . . . . . . . 20 1.5 Bochner spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.6 Some ordinary differential equations . . . . . . . . . . . . . . . . . 25 I STEADY-STATE PROBLEMS 29 2 Pseudomonotone or weakly continuous mappings 31 2.1 Abstract theory, basic definitions, Galerkin method . . . . . . . . . 31 2.2 Some facts about pseudomonotone mappings . . . . . . . . . . . . 35 2.3 Equations with monotone mappings . . . . . . . . . . . . . . . . . 37 2.4 Quasilinear elliptic equations . . . . . . . . . . . . . . . . . . . . . 42 2.4.1 Boundary-value problems for 2nd-order equations. . . . . . 43 2.4.2 Weak formulation . . . . . . . . . . . . . . . . . . . . . . . 44 2.4.3 Pseudomonotonicity, coercivity, existence of solutions . . . 48 vii viii Contents 2.4.4 Higher-order equations . . . . . . . . . . . . . . . . . . . . . 56 2.5 Weakly continuous mappings, semilinear equations . . . . . . . . . 61 2.6 Examples and exercises . . . . . . . . . . . . . . . . . . . . . . . . 64 2.6.1 General tools . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.6.2 Semilinear heat equation of type −(cid:2)div(A(x,u)∇(cid:3)u)=g . . . 68 2.6.3 Quasilinear equations of type −div |∇u|p−2∇u +c(u,∇u)=g 75 2.7 Excursion to regularity for semilinear equations . . . . . . . . . . . 85 2.8 Bibliographical remarks . . . . . . . . . . . . . . . . . . . . . . . . 92 3 Accretive mappings 95 3.1 Abstract theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.2 Applications to boundary-value problems . . . . . . . . . . . . . . 99 3.2.1 Duality mappings in Lebesgue and Sobolev spaces . . . . . 99 3.2.2 Accretivity of monotone quasilinear mappings . . . . . . . . 101 3.2.3 Accretivity of heat equation . . . . . . . . . . . . . . . . . . 105 3.2.4 Accretivity of some other boundary-value problems . . . . . 108 3.2.5 Excursion to equations with measures in right-hand sides . 109 3.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 3.4 Bibliographical remarks . . . . . . . . . . . . . . . . . . . . . . . . 114 4 Potential problems: smooth case 115 4.1 Abstract theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.2 Application to boundary-value problems . . . . . . . . . . . . . . . 120 4.3 Examples and exercises . . . . . . . . . . . . . . . . . . . . . . . . 126 4.4 Bibliographical remarks . . . . . . . . . . . . . . . . . . . . . . . . 130 5 Nonsmooth problems; variational inequalities 133 5.1 Abstract inclusions with a potential . . . . . . . . . . . . . . . . . 133 5.2 Application to elliptic variational inequalities . . . . . . . . . . . . 137 5.3 Some abstract non-potential inclusions . . . . . . . . . . . . . . . . 145 5.4 Excursion to quasivariational inequalities . . . . . . . . . . . . . . 154 5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.6 Some applications to free-boundary problems . . . . . . . . . . . . 163 5.6.1 Porous media flow: a potential variational inequality . . . . 163 5.6.2 Continuous casting: a non-potential variational inequality . 166 5.7 Bibliographical remarks . . . . . . . . . . . . . . . . . . . . . . . . 169 6 Systems of equations: particular examples 171 6.1 Minimization-type variational method: polyconvex functionals . . . 171 6.2 Buoyancy-drivenviscous flow . . . . . . . . . . . . . . . . . . . . . 178 6.3 Reaction-diffusion system . . . . . . . . . . . . . . . . . . . . . . . 186 6.4 Thermistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 6.5 Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 Contents ix II EVOLUTION PROBLEMS 199 7 Special auxiliary tools 201 7.1 Sobolev-Bochner space W1,p,q(I;V1,V2) . . . . . . . . . . . . . . . 201 7.2 Gelfand triple, embedding W1,p,p(cid:2)(I;V,V∗)⊂C(I;H) . . . . . . . . 204 7.3 Aubin-Lions lemma. . . . . . . . . . . . . . . . . . . . . . . . . . . 207 8 Evolution by pseudomonotone or weakly continuous mappings 213 8.1 Abstract initial-value problems . . . . . . . . . . . . . . . . . . . . 213 8.2 Rothe method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 8.3 Further estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 8.4 Galerkin method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 8.5 Uniqueness and continuous dependence on data . . . . . . . . . . . 247 8.6 Application to quasilinear parabolic equations . . . . . . . . . . . . 251 8.7 Application to semilinear parabolic equations . . . . . . . . . . . . 261 8.8 Examples and exercises . . . . . . . . . . . . . . . . . . . . . . . . 264 8.8.1 General tools . . . . . . . . . . . . . . . . . . . . . . . . . . 264 8.8.2 Parabolic equation of type ∂ u−div(|∇u|p−2∇u)+c(u)=g . 266 ∂t 8.8.3 Semilinear heat equation c(u)∂ u−div(κ(u)∇u)=g . . . . 277 ∂t 8.8.4 Navier-Stokes equation ∂ u+(u·∇)u−Δu+∇π=g, divu=0 . 279 ∂t 8.8.5 Some more exercises . . . . . . . . . . . . . . . . . . . . . . 282 8.9 Global monotonicity approach, periodic problems . . . . . . . . . . 288 8.10 Problems with a convex potential: direct method . . . . . . . . . . 294 8.11 Bibliographical remarks . . . . . . . . . . . . . . . . . . . . . . . . 300 9 Evolution governed by accretive mappings 303 9.1 Strong solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 9.2 Integral solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 9.3 Excursion to nonlinear semigroups . . . . . . . . . . . . . . . . . . 314 9.4 Applications to initial-boundary-value problems . . . . . . . . . . . 319 9.5 Applications to some systems . . . . . . . . . . . . . . . . . . . . . 326 9.6 Bibliographical remarks . . . . . . . . . . . . . . . . . . . . . . . . 332 10 Evolution governed by certain set-valued mappings 335 10.1 Abstract problems: strong solutions. . . . . . . . . . . . . . . . . . 335 10.2 Abstract problems: weak solutions . . . . . . . . . . . . . . . . . . 339 10.3 Examples of unilateral parabolic problems . . . . . . . . . . . . . . 343 10.4 Bibliographical remarks . . . . . . . . . . . . . . . . . . . . . . . . 349 11 Doubly-nonlinear problems 351 11.1 Inclusions of the type ∂Ψ(du)+∂Φ(u)(cid:4)f . . . . . . . . . . . . . 351 dt 11.1.1 Potential Ψ valued in R∪{+∞}. . . . . . . . . . . . . . . . 351 11.1.2 Potential Φ valued in R∪{+∞} . . . . . . . . . . . . . . . 358 11.1.3 Uniqueness and continuous dependence on data . . . . . . . 366 x Contents 11.2 Inclusions of the type dE(u)+∂Φ(u)(cid:4)f . . . . . . . . . . . . . . 367 dt 11.2.1 The case E :=∂Ψ. . . . . . . . . . . . . . . . . . . . . . . . 368 11.2.2 The case E non-potential . . . . . . . . . . . . . . . . . . . 372 11.2.3 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 11.3 2nd-order equations . . . . . . . . . . . . . . . . . . . . . . . . . . 377 11.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 11.5 Bibliographical remarks . . . . . . . . . . . . . . . . . . . . . . . . 390 12 Systems of equations: particular examples 393 12.1 Thermo-visco-elasticity. . . . . . . . . . . . . . . . . . . . . . . . . 393 12.2 Buoyancy-drivenviscous flow . . . . . . . . . . . . . . . . . . . . . 405 12.3 Predator-prey system . . . . . . . . . . . . . . . . . . . . . . . . . 408 12.4 Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 12.5 Phase-field model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 12.6 Navier-Stokes-Nernst-Planck-Poisson-typesystem . . . . . . . . . . 420 12.7 Thermistor with eddy currents . . . . . . . . . . . . . . . . . . . . 426 12.8 Thermodynamics of magnetic materials . . . . . . . . . . . . . . . 432 12.9 Thermo-visco-elasticity: fully nonlinear theory . . . . . . . . . . . . 438 Bibliography 449 Index 469

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.