ebook img

Nonlinear ordinary differential equations PDF

540 Pages·2007·5.552 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nonlinear ordinary differential equations

Nonlinear Ordinary Differential Equations An introduction for Scientists and Engineers FOURTHEDITION D. W. Jordan and P. Smith Keele University 1 3 GreatClarendonStreet,OxfordOX26DP OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwidein Oxford NewYork Auckland CapeTown DaresSalaam HongKong Karachi KualaLumpur Madrid Melbourne MexicoCity Nairobi NewDelhi Shanghai Taipei Toronto Withofficesin Argentina Austria Brazil Chile CzechRepublic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore SouthKorea Switzerland Thailand Turkey Ukraine Vietnam OxfordisaregisteredtrademarkofOxfordUniversityPress intheUKandincertainothercountries PublishedintheUnitedStates byOxfordUniversityPressInc.,NewYork ©D.W.JordanandP.Smith,1977,1987,1999,2007 Themoralrightsoftheauthorshavebeenasserted DatabaserightOxfordUniversityPress(maker) Firstpublished1977 Secondedition1987 Thirdedition1999 Fourthedition2007 Allrightsreserved.Nopartofthispublicationmaybereproduced, storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans, withoutthepriorpermissioninwritingofOxfordUniversityPress, orasexpresslypermittedbylaw,orundertermsagreedwiththeappropriate reprographicsrightsorganization.Enquiriesconcerningreproduction outsidethescopeoftheaboveshouldbesenttotheRightsDepartment, OxfordUniversityPress,attheaddressabove Youmustnotcirculatethisbookinanyotherbindingorcover andyoumustimposethesameconditiononanyacquirer BritishLibraryCataloguinginPublicationData Dataavailable LibraryofCongressCataloginginPublicationData Jordan,D.W.(DominicWilliam) Nonlinearordinarydifferentialequations/D.W.Jordanand P.Smith.—3rded. (Oxfordappliedandengineeringmathematics) 1.Differentialequations,Nonlinear.I.Smith,Peter,1935– II.Title,III.Series. (cid:1) QA372.J58 1999 515.352—dc21 99-17648. TypesetbyNewgenImagingSystems(P)Ltd.,Chennai,India PrintedinGreatBritain onacid-freepaperby BiddlesLtd.,King’sLynn,Norfolk ISBN 978–0–19–920824–1 (Hbk) ISBN 978–0–19–920825–8 (Pbk) 10 9 8 7 6 5 4 3 2 1 Contents Prefacetothefourthedition vii 1 Second-orderdifferentialequationsinthephaseplane 1 1.1 Phasediagramforthependulumequation 1 1.2 Autonomousequationsinthephaseplane 5 1.3 Mechanicalanalogyfortheconservativesystemx¨=f(x) 14 1.4 Thedampedlinearoscillator 21 1.5 Nonlineardamping:limitcycles 25 1.6 Someapplications 32 1.7 Parameter-dependentconservativesystems 37 1.8 Graphicalrepresentationofsolutions 40 Problems 42 2 Planeautonomoussystemsandlinearization 49 2.1 Thegeneralphaseplane 49 2.2 Somepopulationmodels 53 2.3 Linearapproximationatequilibriumpoints 57 2.4 Thegeneralsolutionoflinearautonomousplanesystems 58 2.5 Thephasepathsoflinearautonomousplanesystems 63 2.6 Scalinginthephasediagramforalinearautonomoussystem 72 2.7 Constructingaphasediagram 73 2.8 Hamiltoniansystems 75 Problems 79 3 Geometricalaspectsofplaneautonomoussystems 89 3.1 Theindexofapoint 89 3.2 Theindexatinfinity 97 3.3 Thephasediagramatinfinity 100 3.4 Limitcyclesandotherclosedpaths 104 3.5 Computationofthephasediagram 107 3.6 Homoclinicandheteroclinicpaths 111 Problems 113 iv Contents 4 Periodicsolutions;averagingmethods 125 4.1 Anenergy-balancemethodforlimitcycles 125 4.2 Amplitudeandfrequencyestimates:polarcoordinates 130 4.3 Anaveragingmethodforspiralphasepaths 134 4.4 Periodicsolutions:harmonicbalance 138 4.5 Theequivalentlinearequationbyharmonicbalance 140 Problems 143 5 Perturbationmethods 149 5.1 Nonautonomoussystems:forcedoscillations 149 5.2 ThedirectperturbationmethodfortheundampedDuffing’sequation 153 5.3 Forcedoscillationsfarfromresonance 155 5.4 Forcedoscillationsnearresonancewithweakexcitation 157 5.5 Theamplitudeequationfortheundampedpendulum 159 5.6 Theamplitudeequationforadampedpendulum 163 5.7 Softandhardsprings 164 5.8 Amplitude–phaseperturbationforthependulumequation 167 5.9 Periodicsolutionsofautonomousequations(Lindstedt’smethod) 169 5.10 Forcedoscillationofaself-excitedequation 171 5.11 TheperturbationmethodandFourierseries 173 5.12 Homoclinicbifurcation:anexample 175 Problems 179 6 Singularperturbationmethods 183 6.1 Non-uniformapproximationstofunctionsonaninterval 183 6.2 Coordinateperturbation 185 6.3 Lighthill’smethod 190 6.4 Time-scalingforseriessolutionsofautonomousequations 192 6.5 Themultiple-scaletechniqueappliedtosaddlepointsandnodes 199 6.6 Matchingapproximationsonaninterval 206 6.7 Amatchingtechniquefordifferentialequations 211 Problems 217 7 Forcedoscillations:harmonicandsubharmonicresponse,stability, andentrainment 223 7.1 Generalforcedperiodicsolutions 223 7.2 Harmonicsolutions,transients,andstabilityforDuffing’sequation 225 7.3 Thejumpphenomenon 231 7.4 Harmonicoscillations,stability,andtransientsfortheforcedvanderPolequation 234 7.5 FrequencyentrainmentforthevanderPolequation 239 Contents v 7.6 SubharmonicsofDuffing’sequationbyperturbation 242 7.7 StabilityandtransientsforsubharmonicsofDuffing’sequation 247 Problems 251 8 Stability 259 8.1 Poincaréstability(stabilityofpaths) 260 8.2 Pathsandsolutioncurvesforgeneralsystems 265 8.3 Stabilityoftimesolutions:Liapunovstability 267 8.4 Liapunovstabilityofplaneautonomouslinearsystems 271 8.5 Structureofthesolutionsofn-dimensionallinearsystems 274 8.6 Structureofn-dimensionalinhomogeneouslinearsystems 279 8.7 Stabilityandboundednessforlinearsystems 283 8.8 Stabilityoflinearsystemswithconstantcoefficients 284 8.9 Linearapproximationatequilibriumpointsforfirst-ordersystemsinnvariables 289 8.10 Stabilityofaclassofnon-autonomouslinearsystemsinndimensions 293 8.11 Stabilityofthezerosolutionsofnearlylinearsystems 298 Problems 300 9 Stabilitybysolutionperturbation:Mathieu’sequation 305 9.1 Thestabilityofforcedoscillationsbysolutionperturbation 305 9.2 Equationswithperiodiccoefficients(Floquettheory) 308 9.3 Mathieu’sequationarisingfromaDuffingequation 315 9.4 TransitioncurvesforMathieu’sequationbyperturbation 322 9.5 Mathieu’sdampedequationarisingfromaDuffingequation 325 Problems 330 10 Liapunovmethodsfordeterminingstabilityofthezerosolution 337 10.1 IntroducingtheLiapunovmethod 337 10.2 TopographicsystemsandthePoincaré–Bendixsontheorem 338 10.3 Liapunovstabilityofthezerosolution 342 10.4 Asymptoticstabilityofthezerosolution 346 10.5 ExtendingweakLiapunovfunctionstoasymptoticstability 349 10.6 Amoregeneraltheoryforautonomoussystems 351 10.7 Atestforinstabilityofthezerosolution:ndimensions 356 10.8 Stabilityandthelinearapproximationintwodimensions 357 10.9 Exponentialfunctionofamatrix 365 10.10 Stabilityandthelinearapproximationfornthorderautonomoussystems 367 10.11 Specialsystems 373 Problems 377 vi Contents 11 Theexistenceofperiodicsolutions 383 11.1 ThePoincaré–Bendixsontheoremandperiodicsolutions 383 11.2 Atheoremontheexistenceofacentre 390 11.3 Atheoremontheexistenceofalimitcycle 394 11.4 VanderPol’sequationwithlargeparameter 400 Problems 403 12 Bifurcationsandmanifolds 405 12.1 Examplesofsimplebifurcations 405 12.2 Thefoldandthecusp 407 12.3 Furthertypesofbifurcation 411 12.4 Hopfbifurcations 419 12.5 Higher-ordersystems:manifolds 422 12.6 Linearapproximation:centremanifolds 427 Problems 433 13 Poincarésequences,homoclinicbifurcation,andchaos 439 13.1 Poincarésequences 439 13.2 Poincarésectionsfornonautonomoussystems 442 13.3 Subharmonicsandperioddoubling 447 13.4 Homoclinicpaths,strangeattractorsandchaos 450 13.5 TheDuffingoscillator 453 13.6 Adiscretesystem:thelogisticdifferenceequation 462 13.7 Liapunovexponentsanddifferenceequations 466 13.8 Homoclinicbifurcationforforcedsystems 469 13.9 Thehorseshoemap 476 13.10 Melnikov’smethodfordetectinghomoclinicbifurcation 477 13.11 Liapunovexponentsanddifferentialequations 483 13.12 Powerspectra 491 13.13 Somefurtherfeaturesofchaoticoscillations 492 Problems 494 Answerstotheexercises 507 Appendices 511 A Existenceanduniquenesstheorems 511 B Topographicsystems 513 C Normsforvectorsandmatrices 515 D Acontourintegral 517 E Usefulresults 518 Referencesandfurtherreading 521 Index 525 Preface to the fourth edition ThisbookisarevisedandreseteditionofNonlinearordinarydifferentialequations,published inpreviouseditionsin1977,1987,and1999.Additionalmaterialreflectingthegrowthinthe literatureonnonlinearsystemshasbeenincluded,whilstretainingthebasicstyleandstructure ofthetextbook.Thewideapplicabilityofthesubjecttothephysical,engineering,andbiological sciencescontinuestogenerateasupplyofnewproblemsofpracticalandtheoreticalinterest. Thebookdevelopedfromcoursesonnonlineardifferentialequationsgivenovermanyyears in the Mathematics Department of Keele University. It presents an introduction to dynamical systemsinthecontextofordinarydifferentialequations,andisintendedforstudentsofmathe- matics,engineeringandthesciences,andworkersintheseareaswhoaremainlyinterestedinthe more direct applications of the subject. The level is about that of final-year undergraduate, or master’sdegreecoursesintheUK.IthasbeenfoundthatselectedmaterialfromChapters1to5, and8,10,and11canbecoveredinaone-semestercoursebystudentshavingabackgroundof techniques in differential equations and linear algebra. The book is designed to accommodate courses of varying emphasis, the chapters forming fairly self-contained groups from which a coherentselectioncanbemadewithoutusingsignificantpartsoftheargument. From the large number of citations in research papers it appears that although it is mainly intended to be a textbook it is often used as a source of methods for a wide spectrum of applicationsinthescientificandengineeringliterature.Wehopethatresearchworkersinmany disciplineswillfindtheneweditionequallyhelpful. Generalsolutionsofnonlineardifferentialequationsarerarelyobtainable,thoughparticular solutions can be calculated one at a time by standard numerical techniques. However, this book deals with qualitative methods that reveal the novel phenomena arising from nonlinear equations, and produce good numerical estimates of parameters connected with such general featuresasstability,periodicityandchaoticbehaviourwithouttheneedtosolvetheequations. Weillustratethereliabilityofsuchmethodsbygraphicalornumericalcomparisonwithnumer- ical solutions. For this purpose the Mathematica™software was used to calculate particular exact solutions; this was also of great assistance in the construction of perturbation series, trigonometricidentities,andforotheralgebraicmanipulation.However,experiencewithsuch softwareisnotnecessaryforthereader. Chapters1to4mainlytreatplaneautonomoussystems.Thetreatmentiskeptatanintuitive level,butwetrytoencouragethereadertofeelthat,almostimmediately,usefulnewinvestiga- tivetechniquesarereadilyavailable.Themainfeaturesofthephaseplane—equilibriumpoints, linearization, limit cycles, geometrical aspects—are investigated informally. Quantitative esti- mates for solutions are obtained by energy considerations, harmonic balance, and averaging methods. viii Prefacetothefourthedition Variousperturbationtechniquesfordifferentialequationswhichcontainasmallparameter aredescribedinChapter5,andsingularperturbationsfornon-uniformexpansionsaretreated extensively in Chapter 6. Chapter 7 investigates harmonic and subharmonic responses, and entrainment,usingmainlythevanderPolplanemethod.Chapters8,9,and10dealmorefor- mallywithstability.InChapter9itsisshownthatsolutionperturbationtoteststabilitycanlead to linear equations with periodic coefficients including Mathieu’s equation, and Floquet the- oryisincludedChapter10presents.Liapunovmethodsforstabilityforpresented.Chapter11 includescriteriafortheexistenceofperiodicsolutions.Chapter12containsanintroductionto bifurcation methods and manifolds. Poincaré sequences, homoclinic bifurcation; Melnikov’s methodandLiapunovexponentsareexplained,mainlythroughexamples,inChapter13. Thetexthasbeensubjectedtoathoroughrevisiontoimprove,wehope,theunderstandingof nonlinearsystemsforawidereadership.Themainnewfeaturesofthesubjectmatterincludean extendedexplanationofMathieu’sequationwithparticularreferencetodampedsystems,more on the exponential matrix and a detailed account of Liapunov exponents for both difference anddifferentialequations. Many of the end-of-chapter problems, of which there are over 500, contain significant applications and developments of the theory in the chapter. They provide a way of indicat- ing developments for which there is no room in the text, and of presenting more specialized material.Wehavehadmanyrequestssincethefirsteditionforasolutionsmanual,andsimul- taneouslywiththepublicationofthefourthedition,thereisnowavailableacompanionbook, NonlinearOrdinaryDifferentialEquations:ProblemsandSolutionsalsopublishedbyOxford UniversityPress,whichpresents,indetail,solutionsofallend-of-chapterproblems.Thisoppor- tunity has resulted in a re-working and revision of these problems. In addition there are 124 fullyworkedexamplesinthetext.Wefeltthatweshouldincludesomeroutineproblemsinthe textwithselectedanswersbutnofullsolutions.Thereare88ofthesenew“Exercises”,which canbefoundattheendofmostsections.Inalltherearenowover750examplesandproblems inthebook. Onthewholewehavewehavetriedtokeepthetextfreefromscientifictechnicalityandto presentequationsinasimplereducedfromwherepossible,believingthatstudentshaveenough todotofollowtheunderlyingarguments. Wearegratefultomanycorrespondentsforkindwords,fortheirqueries,observationsand suggestionsforimprovements.WewishtoexpressourappreciationtoOxfordUniversityPress for giving us this opportunity to revise the book, and to supplement it with the new solutions handbook. DominicJordan PeterSmith Keele June2007 Second-order differential 1 equations in the phase plane Very few ordinary differential equations have explicit solutions expressible in finite terms. This is not simply because ingenuity fails, but because the repertory of standard functions (polynomials,exp,sin,andsoon)intermsofwhichsolutionsmaybeexpressedistoolimited toaccommodatethevarietyofdifferentialequationsencounteredinpractice.Evenifasolution can be found, the ‘formula’ is often too complicated to display clearly the principal features of the solution; this is particularly true of implicit solutions and of solutions which are in the formofintegralsorinfiniteseries. The qualitative study of differential equations is concerned with how to deduce important characteristics of the solutions of differential equations without actually solving them. In this chapter we introduce a geometrical device, the phase plane, which is used extensively for obtaining directly from the differential equation such properties as equilibrium, periodicity, unlimited growth, stability, and so on. The classical pendulum problem shows how the phase plane may be used to reveal all the main features of the solutions of a particular differential equation. 1.1 Phase diagram for the pendulum equation The simple pendulum (see Fig. 1.1) consists of a particle P of mass m suspended from a fixed point O by a light string or rod of length a, which is allowed to swing in a vertical plane. If thereisnofrictiontheequationofmotionis x¨ +ω2sinx =0, (1.1) wherexistheinclinationofthestringtothedownwardvertical,gisthegravitationalconstant, andω2 =g/a. Weconverteqn(1.1)intoanequationconnectingx˙ andx bywriting dx˙ dx˙ dx x¨ = = dt dx dt (cid:1) (cid:2) (1.2) d 1 = x˙2 . dx 2 Thisrepresentaionofx¨ iscalledtheenergytransformation.Equation(1.1)thenbecomes (cid:1) (cid:2) d 1 x˙2 +ω2sinx =0. dx 2

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.