SpringerSeriesin optical sciences 164 foundedbyH.K.V.Lotsch Editor-in-Chief: W.T.Rhodes,Atlanta EditorialBoard: A.Adibi,Atlanta T.Asakura,Sapporo T.W.Ha¨nsch,Garching T.Kamiya,Tokyo F.Krausz,Garching B.Monemar,Linko¨ping H.Venghaus,Berlin H.Weber,Berlin H.Weinfurter,Mu¨nchen SpringerSeriesin optical sciences TheSpringerSeriesinOpticalSciences,undertheleadershipofEditor-in-ChiefWilliamT.Rhodes,Georgia InstituteofTechnology,USA,providesanexpandingselectionofresearchmonographsinallmajorareasof optics:lasersandquantumoptics,ultrafastphenomena,opticalspectroscopytechniques,optoelectronics, quantuminformation,informationoptics,appliedlasertechnology,industrialapplications,andother topicsofcontemporaryinterest. Withthisbroadcoverageoftopics,theseriesisofusetoallresearchscientistsandengineerswhoneed up-to-datereferencebooks. Theeditorsencourageprospectiveauthorstocorrespondwiththeminadvanceofsubmittingamanu- script.SubmissionofmanuscriptsshouldbemadetotheEditor-in-ChieforoneoftheEditors.Seealso www.springer.com/series/624 Editor-in-Chief WilliamT.Rhodes GeorgiaInstituteofTechnology SchoolofElectricalandComputerEngineering Atlanta,GA30332-0250,USA E-mail:[email protected] EditorialBoard AliAdibi BoMonemar GeorgiaInstituteofTechnology DepartmentofPhysics SchoolofElectricalandComputerEngineering andMeasurementTechnology Atlanta,GA30332-0250,USA MaterialsScienceDivision E-mail:[email protected] Linko¨pingUniversity ToshimitsuAsakura 58183Linko¨ping,Sweden E-mail:[email protected] Hokkai-GakuenUniversity FacultyofEngineering HerbertVenghaus 1-1,Minami-26,Nishi11,Chuo-ku FraunhoferInstitutfu¨rNachrichtentechnik Sapporo,Hokkaido064-0926,Japan Heinrich-Hertz-Institut E-mail:[email protected] Einsteinufer37 TheodorW.Ha¨nsch 10587Berlin,Germany Max-Planck-Institutfu¨rQuantenoptik E-mail:[email protected] Hans-Kopfermann-Straße1 HorstWeber 85748Garching,Germany E-mail:[email protected] TechnischeUniversita¨tBerlin TakeshiKamiya OptischesInstitut Straßedes17.Juni135 MinistryofEducation,Culture,Sports 10623Berlin,Germany ScienceandTechnology E-mail:[email protected] NationalInstitutionforAcademicDegrees 3-29-1Otsuka,Bunkyo-ku HaraldWeinfurter Tokyo112-0012,Japan Ludwig-Maximilians-Universita¨tMu¨nchen E-mail:[email protected] SektionPhysik FerencKrausz Schellingstraße4/III Ludwig-Maximilians-Universita¨tMu¨nchen 80799Mu¨nchen,Germany Lehrstuhlfu¨rExperimentellePhysik E-mail:[email protected] AmCoulombwall1 85748Garching,Germany and Max-Planck-Institutfu¨rQuantenoptik Hans-Kopfermann-Straße1 85748Garching,Germany E-mail:[email protected] PleaseviewavailabletitlesinSpringerSeriesinOpticalSciences onserieshomepagehttp://www.springer.com/series/624 Jianquan Yao Yuye Wang Nonlinear Optics and Solid-State Lasers Advanced Concepts, Tuning-Fundamentals and Applications With 537 Figures 123 JianquanYao YuyeWang InstituteofLaserandOptoelectronics CollegeofPrecisionInstrumentandOptoelectronicsEngineering WeiJinRoad92,300072Tianjin,China,People’sRepublic [email protected],[email protected] SpringerSeriesinOpticalSciences ISSN0342-4111 e-ISSN1556-1534 ISBN978-3-642-22788-2 e-ISBN978-3-642-22789-9 DOI10.1007/978-3-642-22789-9 SpringerHeidelbergDordrechtLondonNewYork LibraryofCongressControlNumber: 2011944224 ©Springer-VerlagBerlinHeidelberg2012 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublicationor partsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965,in itscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsareliableto prosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsand regulationsandthereforefreeforgeneraluse. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Since the appearance of the laser 60 years ago, laser technology has been widely appliedtocommunication,industry,measurement,display,imaging,storage,enter- tainment,medicine,andmilitary.Itplayssuchanimportantrolethatitisirreplace- ableinmanyoccasions. The expansion and further development of laser technology and application requireslaseroutputpowerandconversionefficiencytobehigherandhigherwhile laser wavelength range to be wider and wider, even to be tunable. The former leadstothedevelopmentofall-solid-statelaser(DPL)andtunablelasertechnology (TLT),andthelatterrequiresnonlinearopticalfrequencyconversion(NOFC).This book,inthebackgroundoflaserapplication,isthecombinationofnonlinearoptics, all-solid-statetechnologyandlasertunabletechnology. The R&D and industrialization of DPL has nowadays been the hot spot of international laser technology. In recent 10 years, DPL developed rapidly with the device and technology improved greatly. In particular, the development of high-power DPL leads the laser application technology to a new stage. So it is necessary to systematically and comprehensively summarize DPL-related theory, experimental research, design methods, and relevant technology, which could definitelyandeffectivelypromotethedevelopmentofDPLlasertechnology. The book includes following contents (1) theoretic analysis and calculation of three-wave interaction in nonlinear optical crystals, (2) nonlinear optics mixing theory and technology special on second-harmonicgeneration, optical parametric oscillator, and quasi-phase matching technology, (3) the principle, device, and technologyofall-solid-statelasersspecialonRGBlasers,and(4)thetunablelaser technology,specialonmaterialsandtitanium-dopedsapphirelasers. It is a monograph of integration of theory and practice in the field which includes relative theory, calculation, design, technology, experimental scheme, data and results discussing, and some applications. The book makes systematic summarization and integrated analysis of international achievements among last 20yearsinthisfield. This book provides insights into the realization of the combination of non- linear optics and laser tunable technology. It discusses the basics theory and also v vi Preface introduces the technical approach of realization and design of specific devices. More than 900formulasand 500 graphspresentedin this bookdisplay the reader the theoryand technology.Someof them arealso universallyinstructiveforother relevantfields. Thebookcoversthelatestinternationalachievementsofthisfield.Igavelectures and did collaborative researches in USA, Germany, UK, France, Hong Kong, and Taiwan for many times, and had useful discussions with many professors, such as Prof. A. E. Siegman (Stanford University), Prof. E. Gamire (USC), E.W. Plummer (U. Penn), Prof. A. F. Garito (U. Penn), Prof. R. Miles (Princeton University), H. Weber (Berlin Industray University), Prof. J. Zyss (France), Prof. W.SibbettandM.Dunn(St.Andrews),Prof.H.S.Kwok(HongKongUniversityof Science&Technology),andZ.Z.Yang(TaiwanUniversity).Theyalsogavesome practicalsuggestionsforthisbook.Thenameofthisbookisfromthesuggestionby Prof.H.Weber. I should thank Academician Daheng Wang’s great guidance for my research work. During20yearsofmyengaginginteachingandscienceresearchworkonlaser physics, laser technology, and laser application, I had completed many science researchprojects,trainedoveronehundredgraduatestudentsandpostdoctors,and publishedthreebooksinChinese.Thisbookincludestheresearchresultof20years’ hardbutfruitfulworkofallmembersandgraduatestudentsundermyleadershipin InstituteofLaser&OptoelectronicsinTianjinUniversity. Dr.YuyeWang,coauthorandmystudent,didalotoforganizationalpaperwork, suchasdatacollection,collation,andfiguremaking. Prof. Yaqiu Jin from Fudan University made thorough collation for this book, hereonIexpressmydeepgratitudeforProf.Jin,andforallmyfriends,colleagues, andmystudentsfortheirkindhelpandsinceresupport. ThisbookisdedicatedtomyAlmaMaterTianjinUniversityandSuzhouSenior High School and also dedicated to my family who wholeheartedly supported my workfordecades. Itwillbehelpfulforuniversityteachers,graduatestudents,undergraduatesand librariesinthisfield,aswellastheincreasingnumbersofscientistsandengineers enteringinthisfield. Tianjin,China JianquanYao July2011 YuyeWang Contents 1 Analysisand Calculationof Three-WaveInteraction inNonlinearOpticalCrystal.............................................. 1 1.1 Tensors, Polarizability Tensors, and Electric PolarizationVectors.................................................. 1 1.1.1 DefinitionofTensors[1] ................................... 1 1.1.2 TensorAlgebraicCalculation.............................. 2 1.1.3 PolarizabilityTensors[2]................................... 4 1.1.4 ClassicalDescriptionofPolarizability .................... 5 1.1.5 NonlinearElectric PolarizationVectors inThree-DimensionalSpaces.............................. 8 1.1.6 MacroscopicQualitiesofPolarizabilityTensor........... 9 1.2 OpticalCharactersofNonlinearCrystals........................... 10 1.2.1 OpticalClassificationofNonlinearOpticalCrystals ..... 10 1.2.2 PropagationofMonochromaticPlaneWave inNonlinearCrystals....................................... 11 1.3 Phase Matching and Nonlinear Coefficients ofThree-WaveInteractioninUniaxialCrystals .................... 17 1.3.1 The Phase-Matching Conditions andtheAngularPhaseMatching .......................... 18 1.3.2 Walk-offAngle ............................................. 23 1.3.3 AcceptanceAnglesofAngularPhaseMatching.......... 24 1.3.4 NoncriticalPhaseMatching................................ 28 1.3.5 EffectiveNonlinearCoefficient ofThree-WaveInteraction ................................. 31 1.4 Phase Matching and Nonlinear Coefficients oftheThree-WaveInteractioninBiaxialCrystals.................. 35 1.4.1 PhaseMatchinginBiaxialCrystals........................ 35 1.4.2 Calculation of the Effective Nonlinear CoefficientinBiaxialCrystals............................. 39 vii viii Contents 1.4.3 CalculationofthePhase-MatchingAngle and the EffectiveNonlinearCoefficient inTypicalBiaxialCrystals................................. 45 1.5 Calculation of the Acceptance Parameters ofThree-WaveInteraction........................................... 52 1.5.1 SmallSignalApproximation............................... 53 1.5.2 Efficiency and Acceptance Parameters forPhaseMismatching..................................... 61 1.6 Walk-OffAngleinBiaxialCrystal .................................. 66 1.6.1 CalculationoftheWalk-OffAngleinBiaxialCrystal.... 67 1.6.2 EffectoftheWalk-OffAngleinBiaxialCrystal.......... 69 1.7 ThermalEffectsandItsEffectontheThree-WaveInteraction..... 74 1.7.1 Self-thermalEffects ........................................ 74 1.7.2 TemperatureDistribution................................... 76 1.7.3 EffectoftheTemperatureDistributiononEfficiency..... 82 1.8 NoncollinearPhaseMatching ....................................... 83 1.8.1 NoncollinearPhaseMatchinginUniaxial Crystals[23] ................................................ 83 1.8.2 NoncollinearPhaseMatchinginBiaxialCrystals ........ 88 1.9 ExamplesofNonlinearCrystals..................................... 90 1.9.1 B(cid:2)BaB2O4(BBO)......................................... 90 1.9.2 LiB3O5(LBO)............................................... 96 1.9.3 KTiOPO4(KTP)............................................. 102 1.9.4 CsLiB6O10(CLBO) ........................................ 108 1.9.5 KBBF ....................................................... 116 References.................................................................... 123 2 NonlinearOpticalFrequencyMixingTheory........................... 125 2.1 CoupledWaveEquations[1–9]...................................... 126 2.1.1 Steady-StateCoupledWaveEquations.................... 126 2.1.2 TransientCoupledWaveEquations........................ 127 2.1.3 Manley–RoweRelations ................................... 128 2.2 Steady-State Small-Signal Solution of Optical FrequencyDoublingandMixing.................................... 129 2.3 GeneralSolutiontoSteady-StateCoupledWave InteractionEquation.................................................. 131 2.3.1 FrequencyDoublingSolutionofType-I PhaseMatching............................................. 134 2.3.2 FrequencyDoublingSolutionofType-II PhaseMatching............................................. 140 2.4 FrequencyDoublingSolution of 3-Dimensional CoupledWaveEquation[3,5]....................................... 150 2.5 TheoryandExperimentsofExtracavityFrequencyDoubling..... 153 2.5.1 ExtracavityFrequencyDoublingwith FocusedGaussianBeams .................................. 154 2.5.2 ExamplesforExtracavityFrequencyDoubling........... 158 Contents ix 2.6 Theoryof Gaussian-Like Distribution:Basis for Multimode(MixedMode)FrequencyDoubling.................... 160 2.6.1 TransverseDistributionofMultimodeBeam ............. 160 2.6.2 CharacteristicsofMultimodeBeam....................... 167 2.6.3 Propagation and Transformation of Gaussian-LikeBeamInaHomogeneousMedium........ 168 2.6.4 MeasurementofMultimodeCoefficientM ............... 170 2.7 FrequencyDoublingofGaussian-LikeBeams[1].................. 173 References.................................................................... 177 3 Theory and Technology of Frequency Doubling andFrequencyMixingLasers............................................. 179 3.1 AnalysisofRateEquationsforIntracavitySHGLaser ............ 180 3.1.1 DerivationofRateEquations .............................. 180 3.1.2 SolutionsofRateEquationsandResultAnalysis......... 183 3.2 Design and Experimental Study on FundamentalModeSHGYAGLaser ............................... 185 3.2.1 Optimal OperationConditionsof SHG DevicesinFundamentalModeSHGYAGLaser ......... 186 3.2.2 OptimalOperationConditionsofAcousto- OpticModulatorinFundamentalModeSHG YAGLaser .................................................. 192 3.2.3 Parameters of the Resonant Cavity inFundamentalModeSHGYAGLaser................... 194 3.2.4 OptimalOutputCouplingof Intracavity FrequencyDoublingLaser................................. 197 3.2.5 AnalysisoftheStabilityoftheFundamental ModeSHGYAGLaser..................................... 202 3.2.6 Designing the Water-Cooling System ofFundamentalModeSHGYAGLaser................... 204 3.2.7 The ExperimentalResult andthe Gross StructureDesignofFundamentalModeSHG YAGLaser .................................................. 206 3.3 High Power Multimode Intracavity Frequency DoublingYAGLaser................................................. 209 3.3.1 ThePrincipleofImprovementinFrequency DoublingEfficiencywithQuasi-Continuous- WaveOperation............................................. 210 3.3.2 Analysis of Thermal Effects underQuasi-Continuous-WaveOperation andRelatedExperiments[10].............................. 213 3.4 FrequencyMixingofUltrashortPulse .............................. 217 3.4.1 GroupVelocityCharacteristicinaDispersive Medium[28,29]............................................ 218 x Contents 3.4.2 PhaseMatchingConditionsforUltrashort Pulses and Effects of Group-Velocity MismatchingandDispersion............................... 222 3.4.3 HarmonicWave GenerationofUltrashort Pulses[29] .................................................. 225 3.4.4 Four-WaveMixingofUltrashortPulses................... 241 References.................................................................... 243 4 OpticalParametricOscillator............................................. 245 4.1 AnalysisontheCharacteristicsofthePulsedOPO................. 247 4.1.1 TheOPOModelandItsCoupledWaveEquation ........ 247 4.1.2 CharacteristicAnalysisoftheLongPulse PumpedOPO ............................................... 251 4.2 SynchronouslyPumpedOpticalParametricOscillator............. 257 4.2.1 TheModelandtheCoupledWaveEquations ofSinglyResonantSynchronouslyPumped OpticalParametricOscillator[19]......................... 258 4.2.2 TheSolutionIgnoringWalk-OffEffect andGroupVelocityDispersion ............................ 260 4.2.3 InfluenceofWalk-OffEffect............................... 262 4.2.4 InfluenceofGroupVelocityandtheFinalExpression.... 263 4.2.5 CharacteristicAnalysisofSynchronously PumpedOpticalParametricOscillator .................... 265 4.3 ConversionEfficiencyandLinewidthCharacteristics ofOPO................................................................ 267 4.3.1 TheEffectofthe Relative Phase andthe DetuningofThreeWavesonConversionEfficiency...... 267 4.3.2 LinewidthofOPO.......................................... 274 4.4 ExamplesofOPOsBasedonTypicalCrystals ..................... 281 4.4.1 Barium-Beta-BorateOPO[20,22–37]..................... 281 4.4.2 Lithium-TriborateOPO[21,38–46]....................... 283 4.4.3 Silver-Gallium-Selenide(AgGaSe )OPO 2 [47–51]...................................................... 284 4.4.4 Kalium-Titan-PhosphateCrystal and KTP–OPO[52–61]......................................... 284 4.4.5 Magnesium-Oxide:LiNbO3(MgO)OPO[64–66]........ 289 4.4.6 ExperimentalResults in Temperature Tuning Singly and Doubly Resonant OscillatorsBasedonMgOWLiNbO ...................... 300 3 4.5 Terahertz-WaveParametricOscillatorandGenerator.............. 308 4.5.1 IntroductionofTerahertzWave............................ 308 4.5.2 TheTheoryofTPGUsingPolaritons...................... 310 4.5.3 TheTypicalExperiments................................... 313 4.6 FutureTendency...................................................... 315 References.................................................................... 317