ebook img

Nonlinear Mechanics of Shells and Plates in Composite, Soft and Biological Materials PDF

586 Pages·2018·28.661 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nonlinear Mechanics of Shells and Plates in Composite, Soft and Biological Materials

Nonlinear Mechanics of Shells and Plates in Composite, Soft and Biological Materials Thisbookguidesthereaderintononlinearmodellingofshellstructuresinapplications where advanced composite and complex biological materials must be described with great accuracy. To achieve this goal, Marco Amabili guides the readers through non- linearshelltheories,nonlinearvibrations,buckling,compositeandfunctionallygraded materials,hyperelasticity,viscoelasticity,nonlineardamping,rubberandsoftbiological materials.Advancednonlinearshelltheories,notavailableinanyotherbook,arefully derived in a simple notation and are ready to be implemented in numerical codes. Ablendofthemostadvancedtheoryandexperimentalresultsisthebook’sotherunique feature. It is a must-read for graduate students and researchers in applied mathematics and engineering, especially those interested in mechanics, aeronautics, civil structures, materials, bioengineering and solid matter at different scales. Marco Amabili is Canada Research Chair Professor of Mechanical Engineering at McGill University. He is the author of more than 440 research publications (over 200 journal papers) and the book Nonlinear Vibrations and Stability of Shells and Plates (Cambridge University Press, 2008). He is Contributing Editor of the International Journal of Non-linear Mechanics, Associate Editor of the Journal of Fluids and Structures,JournalofVibrationandAcoustics,andseveralotherjournals.Hisresearch areas include vibrations of shell structures, nonlinear vibrations, fluid–structure inter- action, dynamics and stability of shells and plates, cardiovascular biomechanics, vis- coelasticity and nonlinear damping, and the vibration monitoring of structures and buildings. To my parents, Vito and Antonietta Nonlinear Mechanics of Shells and Plates in Composite, Soft and Biological Materials MARCO AMABILI McGillUniversity UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 79AnsonRoad,#06-04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107129221 DOI:10.1017/9781316422892 ©MarcoAmabili2018 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2018 PrintedintheUnitedStatesofAmericabySheridanBooks,Inc. AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Amabili,M.,author. Title:NonlinearMechanicsofShellsandPlatesinComposite,SoftandBiological Materials/MarcoAmabili,McGillUniversity. Description:Cambridge,UnitedKingdom;NewYork,NY:CambridgeUniversityPress,2018. Identifiers:LCCN2018013118|ISBN9781107129221(hardback)|ISBN1107129222(hardback) Subjects:LCSH:Shells(Engineering)|Plates(Engineering)|Compositematerials–Mechanicalproperties.| Nonlineartheories. Classification:LCCTA660.S5A3852018|DDC624.1/7762–dc23 LCrecordavailableathttps://lccn.loc.gov/2018013118 ISBN978-1-107-12922-1Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Preface page xv Introduction and Constitutive Equations For Linearly ElasticMaterials 1 I.1 ConstitutiveEquationsfor LinearlyElasticMaterials 3 I.1.1 3-D ConstitutiveEquations for a Layerwithina Laminated Shell 4 I.1.2 ConstitutiveEquations inCase of Negligible Transverse Normal Stress 6 I.1.3 ConstitutiveEquations inCase of Plane Stress (Classical Theories ofPlatesandShells) 7 References 7 1 Classical Nonlinear Theories ofElasticity ofPlates and Shells 8 1.1 Introduction 8 1.1.1 Literature Review 8 1.2 Large Deflection ofRectangular Plates 10 1.2.1 Green’s and Almansi Strain Tensors for FiniteDeformation 10 1.2.2 Strains for FiniteDeflectionof Rectangular Plates: Von Kármán Theory 13 1.2.3 Geometric Imperfections 17 1.2.4 Eulerian,Lagrangian and Second Piola-KirchhoffStressTensors 17 1.2.5 Equationsof Motion inLagrangianDescription 21 1.2.6 Elastic Strain Energy 21 1.2.7 Von Kármán Equation ofMotion 22 1.2.8 Von Kármán Equation ofMotionIncluding Geometric Imperfections 27 1.3 Large Deflection ofCircular Cylindrical Shells 27 1.3.1 EuclideanMetricTensor 27 1.3.2 Green’s Strain Tensor ina Generic Coordinate System 29 1.3.3 Green’s Strain Tensor inCylindrical Coordinates 31 1.3.4 Strains for FiniteDeflectionof CircularCylindrical Shells: Donnell’sNonlinear Theory 33 1.3.5 Geometric Imperfections inDonnell’s NonlinearShell Theory 36 1.3.6 The Flügge-Lur’e-Byrne Nonlinear Shell Theory 37 1.3.7 The Novozhilov Nonlinear Shell Theory 38 1.3.8 The Sanders-KoiterNonlinear Shell Theory 40 v vi Contents 1.3.9 ElasticStrain Energy 40 1.3.10 Donnell’s NonlinearShallow-Shell Theory 41 1.3.11 Donnell’s NonlinearShallow-Shell Theory Including Geometric Imperfections 47 1.4 Large Deflection ofCircular Plates 48 1.4.1 Green’s Strain Tensorfor Circular Plates 48 1.4.2 Strainsfor Finite Deflection ofCircular Plates: Von Kármán Theory 49 1.4.3 ElasticStrainEnergyfor CircularPlatesand Membranes 50 1.4.4 Von Kármán Equation of Motion for CircularPlates 51 1.5 Large Deflection ofSpherical Caps 52 1.5.1 Green’s Strain Tensorin Spherical Coordinates 52 1.5.2 Strainsfor Finite Deflection ofSpherical Caps: Donnell’s Nonlinear Theory 53 1.5.3 Donnell’s Equation of Motion for Shallow Spherical Caps 54 1.5.4 The Flügge-Lur’e-ByrneNonlinear Shell Theory 55 1.6 Large Deflection ofSlightly Corrugated Shells 56 References 57 2 Classical NonlinearTheories of Doubly Curved Shells 60 2.1 Introduction 60 2.2 Doubly Curved Shellsof ConstantCurvature 60 2.2.1 ElasticStrainEnergy 64 2.3 General Theory ofDoubly Curved Shells 64 2.3.1 Theoryof Surfaces 64 2.3.2 Green’s Strain Tensorfor aShell inCurvilinear Coordinates 71 2.3.3 Strain–Displacement Relationshipsfor Novozhilov’sNonlinear Shell Theory 74 2.3.4 Strain–Displacement Relationshipsfor an Improved Version of the NovozhilovShell Theory 77 2.3.5 Simplified Strain–Displacement Relationships 78 2.3.6 ElasticStrainEnergy 78 2.3.7 KineticEnergy 79 2.4 PressureLoadfor Large Displacements 79 2.4.1 VirtualWork by Displacement Dependent Pressure 79 2.4.2 Pressure Applied to theShell Surface 82 2.4.3 Pressurized Circular Cylindrical Shell:Numerical Solution 85 References 89 3 Composite,Sandwichand Functionally GradedMaterials: Advanced Nonlinear Shell Theories 90 3.1 Introduction 90 3.2 Composite Materials 90 3.3 Laminate under Plane Stress for Classical Shell Theories 92 3.3.1 Stress–Strain Relations for a Thin Lamina 92 Contents vii 3.3.2 Stress–Strain Relations for a Layer withina Laminate 94 3.3.3 Elastic Strain Energyfor Laminated Shells 94 3.3.4 Elastic Strain Energyfor Orthotropic and Cross-PlyShells 94 3.4 Lamina and Laminate withShear Deformation 96 3.4.1 Elastic Strain Energyfor Laminated Shells 98 3.5 Sandwich Platesand Shells 98 3.6 Functionally Graded Materialsand Thermal Effects 99 3.6.1 Functionally Graded Material inPlane Stress 101 3.6.2 Functionally Graded Material with ShearDeformation 102 3.7 NonlinearShearDeformation Theories for ModeratelyThick, Laminated and Functionally Graded, DoublyCurved Shells 103 3.8 NonlinearFirst-Order ShearDeformation Theory for Doubly Curved Shells of ConstantCurvature 103 3.8.1 Elastic Strain Energyfor Laminated Shells 105 3.8.2 KineticEnergywithRotary Inertia for Laminated Shells 106 3.9 NonlinearThird-OrderShear Deformation Theoryfor Laminated, Doubly Curved Shells 107 3.9.1 Elastic Strain and KineticEnergies for Laminated Shells 111 3.9.2 Elastic Strain Energyfor Heated, Functionally Graded Shells 112 3.9.3 KineticEnergywithRotary Inertia for Functionally Graded Shells 113 3.9.4 NonlinearThird-Order ShearDeformation Theory for Circular Cylindrical Shells 114 3.10 Thermal Effects onPlatesandShells 116 3.10.1 Isotropic Plates and Shells 116 3.10.2 Laminated Platesand Shells 117 3.11 Effect of Initial In-Plane Stress on aVibrating Rectangular Plate 118 3.12 Effect of Initial Axial Sress on a VibratingCircular Cylindrical Shell 119 3.13 Approximated Nonlinear First-Order Shear Deformation Theory for Conical Shells 120 References 122 4 Nonlinear Shell Theory with Thickness Deformation 124 4.1 Introduction 124 4.2 NonlinearTheorywithThird-Order Thickness andShearDeformation 126 4.3 Elastic Strain Energy for Isotropic and Laminated Shells 134 4.4 Kinetic Energy of theShell 136 4.5 Formulationof theTheoryfor CircularCylindrical Shells 136 4.6 Simply SupportedCircular Cylindrical Shell Loaded by Pressure 139 4.7 NumericalResultsfor aPressure Loaded CircularCylindrical Shell 142 4.7.1 DisplacementIndependent Pressure Load (Distributed Radial Forces) 142 4.7.2 DisplacementDependent Pressure Load (Actual Pressure) 147 References 148 viii Contents 5 Hyperelasticity of Soft Biological and Rubber Materials 151 5.1 Soft Materials: Rubbers, Foams and Biomaterials 151 5.2 Strain Tensors and Principal Stretches 154 5.3 Invariants ofthe Strain Tensors 159 5.4 Stress Tensors 160 5.5 Strain Energy Density Function 162 5.6 Isotropic Hyperelastic Materials 164 5.6.1 Representation in Terms of Invariants 165 5.6.2 Representation in Terms of Principal Stretches 166 5.7 Incompressible Hyperelastic Materials 167 5.7.1 Incompressible Isotropic Materials 168 5.8 Compressible Hyperelastic Materials 170 5.8.1 CompressibleIsotropic Materials 172 5.8.2 CompressibleIsotropic Materialsin Terms of Invariants 172 5.9 Hyperelastic Modelsof Incompressible Isotropic Materials 173 5.9.1 Neo-Hookean Model 174 5.9.2 Mooney-RivlinModel 179 5.9.3 OgdenModel 183 5.9.4 Gent Model 187 5.9.5 Fung-Demiray Model 191 5.10 Hyperelastic Modelsof Compressible Isotropic Materials 193 5.10.1 Neo-Hookean CompressibleModel 193 5.10.2 Mooney-RivlinCompressibleModel 195 5.10.3 OgdenCompressible Model 196 5.10.4 Linearly Elastic Material 196 5.11 Anisotropic Hyperelastic Materials 197 5.11.1 Transversely Isotropic Materials 197 5.11.2 Transversely Isotropic Incompressible Materials 199 5.11.3 Composite Materials with Two Families ofFibres 199 5.11.4 Materials with Two Orthogonal orEquivalent Families of Fibres 201 5.12 Hyperelastic Modelsof Anisotropic Materials 201 5.12.1 Standard Reinforcing Model for Transversely Isotropic Incompressible Materials 201 5.12.2 Horgan-Saccomandi Model for Transversely Isotropic Incompressible Materials 202 5.12.3 Holzapfel–Gasser–Ogden Model for TwoFamilies ofFibres 202 5.12.4 Holzapfel-OgdenModel for Fibre Dispersion 207 5.13 Model of Artery Wall 213 5.13.1 StrainEnergyof theWall 215 5.13.2 Residual Stresses inArterialWall 215 References 223 6 Introduction toNonlinearDynamics 225 6.1 Introduction 225 6.2 PeriodicNonlinear Vibrations: Softening and Hardening Systems 225

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.