ebook img

Nonlinear Ill-posed Problems of Monotone Type PDF

422 Pages·2006·1.728 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nonlinear Ill-posed Problems of Monotone Type

NONLINEAR ILL-POSED PROBLEMS OF MONOTONE TYPE Nonlinear Ill-posed Problems of Monotone Type by YAKOV ALBER and IRINA RYAZANTSEVA A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN-10 1-4020-4395-3 (HB) ISBN-13 978-1-4020-4395-6 (HB) ISBN-10 1-4020-4396-1 (e-book) ISBN-13 978-1-4020-4396-3 (e-book) Published by Springer, P.O. Box 17, 3300 AADordrecht, The Netherlands. www.springer.com Printed on acid-free paper All Rights Reserved © 2006 Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed in the Netherlands. Contents PREFACE vii ACKNOWLEDGMENTS xiii 1 INTRODUCTION INTO THE THEORY OF MONOTONE AND ACCRETIVE OPERATORS 1 1.1 ElementsofNonlinearFunctionalAnalysis. . . . . . . . . . . . . . . . . . . 1 1.2 Subdifferentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3 MonotoneOperators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.4 MaximalMonotoneOperators. . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.5 DualityMappings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.6 BanachSpacesGeometryandRelatedDualityEstimates. . . . . . . . . . . 40 1.7 EquationswithMaximalMonotoneOperators. . . . . . . . . . . . . . . . . 52 1.8 SummationofMaximalMonotoneOperators . . . . . . . . . . . . . . . . . 59 1.9 EquationswithGeneralMonotoneOperators . . . . . . . . . . . . . . . . . 66 1.10 EquationswithSemimonotoneOperators . . . . . . . . . . . . . . . . . . . 70 1.11 VariationalInequalitieswithMonotoneOperators. . . . . . . . . . . . . . . 72 1.12 VariationalInequalitieswithSemimonotoneOperators . . . . . . . . . . . . 79 1.13 VariationalInequalitieswithPseudomonotoneOperators. . . . . . . . . . . 84 1.14 VariationalInequalitieswithQuasipotentialOperators . . . . . . . . . . . . 90 1.15 EquationswithAccretiveOperators . . . . . . . . . . . . . . . . . . . . . . 95 1.16 Equationswithd-AccretiveOperators . . . . . . . . . . . . . . . . . . . . . 108 2 REGULARIZATION OF OPERATOR EQUATIONS 117 2.1 EquationswithMonotoneOperatorsinHilbertSpaces . . . . . . . . . . . . 117 2.2 EquationswithMonotoneOperatorsinBanachSpaces . . . . . . . . . . . . 123 2.3 EstimatesoftheRegularizedSolutions . . . . . . . . . . . . . . . . . . . . . 129 2.4 EquationswithDomainPerturbations . . . . . . . . . . . . . . . . . . . . . 133 2.5 EquationswithSemimonotoneOperators . . . . . . . . . . . . . . . . . . . 136 2.6 EquationswithNon-MonotonePerturbations . . . . . . . . . . . . . . . . . 138 2.7 EquationswithAccretiveandd-AccretiveOperators . . . . . . . . . . . . . 142 3 PARAMETERIZATION OF REGULARIZATION METHODS 151 3.1 ResidualPrincipleforMonotoneEquations . . . . . . . . . . . . . . . . . . 152 vi Contents 3.2 ResidualPrincipleforAccretiveEquations . . . . . . . . . . . . . . . . . . . 163 3.3 GeneralizedResidualPrinciple . . . . . . . . . . . . . . . . . . . . . . . . . 167 3.4 ModifiedResidualPrinciple . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 3.5 MinimalResidualPrinciple . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 3.6 SmoothingFunctionalPrinciple . . . . . . . . . . . . . . . . . . . . . . . . . 183 4 REGULARIZATION OF VARIATIONAL INEQUALITIES 191 4.1 VariationalInequalitiesonExactlyGivenSets. . . . . . . . . . . . . . . . . 191 4.2 VariationalInequalitiesonApproximatelyGivenSets. . . . . . . . . . . . . 204 4.3 VariationalInequalitieswithDomainPerturbations . . . . . . . . . . . . . . 215 4.4 ExamplesofVariationalInequalities . . . . . . . . . . . . . . . . . . . . . . 219 4.5 VariationalInequalitieswithUnboundedOperators . . . . . . . . . . . . . . 227 4.6 VariationalInequalitieswithNon-MonotonePerturbations . . . . . . . . . . 233 4.7 VariationalInequalitieswithMosco-ApproximationoftheConstraintSets . 236 4.8 VariationalInequalitieswithHypomonotoneApproximations . . . . . . . . 245 4.9 VariationalInequalitieswithPseudomonotoneOperators. . . . . . . . . . . 249 4.10 VariationalInequalitiesofMixedType . . . . . . . . . . . . . . . . . . . . . 254 5 APPLICATIONS OF THE REGULARIZATION METHODS 259 5.1 ComputationofUnboundedMonotoneOperators . . . . . . . . . . . . . . . 259 5.2 ComputationofUnboundedSemimonotoneOperators . . . . . . . . . . . . 268 5.3 ComputationofUnboundedAccretiveOperators . . . . . . . . . . . . . . . 271 5.4 HammersteinTypeOperatorEquations . . . . . . . . . . . . . . . . . . . . 278 5.5 Pseudo-SolutionsofMonotoneEquations . . . . . . . . . . . . . . . . . . . 283 5.6 MinimizationProblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 5.7 OptimalControlProblems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 5.8 FixedPointProblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 6 SPECIAL TOPICS ON REGULARIZATION METHODS 311 6.1 Quasi-SolutionMethod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 6.2 ResidualMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 6.3 PenaltyMethod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 6.4 ProximalPointMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 6.5 IterativeRegularizationMethod . . . . . . . . . . . . . . . . . . . . . . . . 340 6.6 Iterative-ProjectionRegularizationMethod . . . . . . . . . . . . . . . . . . 352 6.7 ContinuousRegularizationMethod . . . . . . . . . . . . . . . . . . . . . . . 363 6.8 Newton−KantorovichRegularizationMethod . . . . . . . . . . . . . . . . . 376 7 APPENDIX 385 7.1 RecurrentNumericalInequalities . . . . . . . . . . . . . . . . . . . . . . . . 385 7.2 DifferentialInequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 BIBLIOGRAPHY 391 INDEX 407 PREFACE Manyappliedproblemscanbereducedtoanoperatorequationofthefirstkind Ax=f, x∈X, f ∈Y, (1) where an operator A maps from a metric space X into a metric space Y. We are inter- ested in those problems (1) which belong to the class of ill-posed problems. The concept ofawell-posednesswasintroducedbyJ.Hadamardatthebeginningofthe20thcentury[91]. Definition 1 Let X and Y be metric spaces. The problem (1) is called well-posed if the following conditions are satisfied: (i) the problem is solvable in X for all f ∈Y; (ii) its solution x∈X is unique; (iii) x∈X continuously depends on perturbations of the element f ∈Y. Problems that do not satisfy even one of the above requirements (i)-(iii) collectively form the class of ill-posed problems. Emphasize that solutions of ill-posed problems (if they exist) are unstable to small changes in the initial data. In connection with this, a commonbeliefofmanymathematicians inthepastwasthatwell-posedness is anecessary condition for the problems (1) to bemathematicallyor physicallymeaningful. This raised adebateaboutwhetherornotthereisanyneedformethodsofsolvingill-posedproblems. Thetremendousdevelopmentofscienceandtechnologyofthelastdecadesled,moreoften thannot,topracticalproblemswhichareill-posedbytheirnature. Solvingsuchproblems becameanecessityand,thus,inventingmethodsforthatpurposebecameafieldofresearch intheintersectionoftheoreticalmathematicswiththeappliedsciences. Thefactisthat,inpracticalcomputations,thedateAandfoftheproblem(1),asarule, arenotpreciselyknown. Therefore,itisimportanttostudythecontinuousdependenceof theapproximatesolutionsontheintrinsicerrorsinvolvedintheproblemdate. Withoutsuch knowledge,directnumericalresolutionof(1)isimpossible. Atthesametime,establishing the continuous dependence mentioned above is not an easy task. Attempts to avoid this difficulty led investigators to the new theory and conceptually new methods for stable solution of ill-posed problems. The expansion of computational technology contributed in largeextenttotheaccelerationofthisprocess. Building the so-called regularization methods for solving ill-posed problems was initi- atedbyA.N.Tikhonov[216]. Heprovedtherethefollowingimportantresult: Theorem 2 A continuous one-to-one operator A which maps acompactsubsetMof themetricspaceX intometricspaceY hasthecontinuousinverseoperatorA−1 ontheset N =AM⊂Y. Onthebasisofthistheorem,M.M.Lavrent’evintroducedtheconceptofconditionally well-posedproblems[125]. viiiPREFACE Definition 3 Theproblem(1)issaidt obeconditionallywell-posedifthereexistsnonempty setX 1⊆Xsuchthat (i)theequation(1)hasasolutioni nX 1; (ii)thissolutionisuniqueforeachf∈Y 1=AX1⊂Y; (iii)theoperatorA −1 iscontinuousonY 1. ThesubsetX 1 iscalledthewell-posednesssetofproblem(1).AccordingtoTheorem2 andDefinition3,weshouldimposeconditionsontheoperatorAinequation(1)suchthat theywilldefinethecompactsetX 1.Evenifthoseconditionsaregiven,therearestilldiffi- cultiesthatarisewhenwetrytoestablishsolvabilityof(1)withf∈Y 1.Thesedifficulties canbeovercomeifX 1isunderstoodasthequasi-solutionsetofequation(1)withf∈Y 1[97]. Definition 4 Anelementx∈X 1 iscall ed aquasi-solutionofequation(1)ifitmini- mizestheresidualρ Y(Ax,f)onthesetX 1,whereρ Y isametricinthespaceY. ProblemsforwhichitisnotpossibletoconstructthecompactsetX 1 ofadmissibleso- lutionsaresaidtobeessentiallyill-posed.Inordertosolvesuchproblems,A.N.Tikhonov proposedtheso-calledregularizationmethod[217].Todescribethismethodweestablish thefollowingdefinitionassuming,forsimplicity,thatonlytheright-handsidefinequation (1)isgive nwithsomeerrorδ. Definition 5 AnoperatorR(α,f δ) :Y→Xisca lled aregularizingoperatorforequa- tion(1)ifitsatisfiestworequirements: (i)R(α,f δ)isdefinedforallα>0andallf δ ∈Ysuchthatρ (f,fδ)≤δ; Y (ii)Thereexistsafunctionα=α(δ)suchthatR(α(δ),f δ)=xδ →xasδ→0,wherexis α asolutionof(1). OperatorsR(α,f)leadtoavarietyofregularizationmethods.Anelementx δ iscalled α theregularizedsolutionandαiscalledtheregularizationparameter.Thus,byDefinition 5,anyregularizationmethodhastosolvetwomainproblems: A)toshowhowt oconstructaregularizingoperatorR(α,f δ), B)toshowhowtheregularizationparameterα=α(δ)shouldbechoseninordertoensure convergenceofx δ tosomexasδ→0. α Theregularizationmethodproposedin[217]isgive ninvariationalform(seealso[43,99, 130,167,218]).Itproduces asolutionx δ asaminimumpointofthefollowingsmoothing α functional: Φα(x)=ρ2(Ax,fδ)+αφ(x),(2) δ Y whereφ(x):X→R 1isastabilizingfunctionalwhichhasthepropertythatφ(z)≥0forall z∈D(φ)⊂X,whereD(φ)isadomainoffunctionalφ.Moreover,asolutionxofequation (1)needstobeaninclusionx∈D(φ). Besidestheregularizationmethoddescribedbythefunctional(2),twomorevariational methodsforsolvingill-posedproblemsareknown[99]:thequasi-solutionmethodgive nby PREFACE ix theminimizationproblem (cid:7)Axδ−fδ(cid:7)=min{(cid:7)Ax−fδ(cid:7)|x∈X1}, and the residual method in which approximate solutions xδ for equation (1) are found by solvingtheminimizationproblem: (cid:7)xδ(cid:7)=min{(cid:7)x(cid:7)|x∈Gδ}, where Gδ ={x∈D(A)|(cid:7)Ax−fδ(cid:7)≤σ(δ)}. Here D(A) denotes a domain of operator A and the positive scalar function σ(δ) has the propertythatσ(δ)→0asδ→0. The increasing variety of variational regularization methods and growing interest in them are due to the following facts: (i) a priori information about (1) can be used in the process of their construction and (ii) there exists quite a wide choice of different means of solvingoptimizationproblems. Iftheelementxδ isfoundbysolvingaparametricequationofthetype α Ax+αBx=fδ, (3) where B is some stabilizing operator, then this procedure is an operator regularization method[54,124,125],andtheequation(3)isaregularizedoperatorequation. The methods presented above were intensively studied in the case of linear equations. Thisisconnectedwiththefactthatforlinearoperatorsthereareverypowerfulinvestigation toolscontainedinthespectraltheoryandoptimizationtheoryforquadraticfunctionals. In thisdirectionmanyratherdelicatecharacteristicsandpropertiesofthementionedmethods havebeenalreadyobtained[42,99,125,153,217]. Inspiteofthefactthatsomenonlinearproblemsweresolvedbyregularizationmethods a long time ago, the progress in this sense was slow. This seems to be due to researchers’ wishtocoveraswideclassesofnonlinearproblemsaspossible. Itisclearthatthespectral theory can not be applied directly to nonlinear operators. Moreover, if A is a nonlinear operator,thefunctionalsρ (Ax,fδ)andΦα(x)arenonconvex,ingeneral. Inaddition,the Y δ questionofconvexityforthesetGδ remainsstillopen,thatproducesenormousdifficulties insolvingvariationalproblems. At the same time, the separate researches into nonlinear problems of the monotone type, like operator equations and variational inequalities with monotone, maximal mono- tone,semimonotone,pseudomonotoneandaccretiveoperators,turnedouttobemuchmore successful. Fromtheappliedpointofviewtheseclassesareextremelywide(itissufficient torecallthatgradientsandsubgradientsofconvexfunctionalsaremonotoneandmaximal monotoneoperators,respectively,andnonexpansivemappingsareaccretive.) Aconsiderablepartofthisbookisdevotedtostudyofnonlinearill-posedproblemswith operators in these classes. We use the fundamental results in the theory of monotone and accretiveoperatorsdiscoveredduringthelatterhalfofthe20thcenturybyR.I.Kachurovskii [102,103],M.M.Vainberg[220,221], F.E. Browder[52]-[58],G.Minty[149], J.-L. Lions [128],H.Brezis[49],R.Rockafellar[175]-[181],T.Kato[106,109]andmanyothers. x PREFACE From the very beginning, the concept of ill-posedness was included in the construction and theoretical foundation of approximative methods for solving nonlinear problems with properly monotone and properly accretive operators, and according to this concept, it is necessary: 1)toassumethatasolutionoftheoriginalproblemexists; 2)toconstructasequenceofregularizedsolutions; 3) to determine whether this sequence converges to a solution of problem (1) and the convergenceisstablewhentheinitialdataareperturbed. Let us briefly describe the contents of the book. It consists of seven chapters that comprise fifty-seven sections. The numeration of sections is in the form X.Y, where X indicatesthenumberofachapterandYdenotesthecurrentnumberofthesectionwithin the given chapter. The numeration of definitions, theorems, lemmas, corollaries, remarks andpropositionsisintheformX.Y.Z,whereXandYareasaboveandZindicatesanumber ofthestatementinSectionX.Y.Formulasarenumberedanalogously. Chapter1containsthebasicknowledgefromconvexandfunctionalanalysis,optimiza- tion,Banachspacegeometryandtheoryofmonotoneandaccretiveoperatorswhichallows thestudyoftheproposedmaterialwithoutturning,generally,toothersources. Equations and variational inequalities with maximal monotone operators are main subjects of our investigations due to their most important applications. Recall that maximal monotone operators are set-valued, in general. In spite of this, the properties of maximal monotone operators,solvabilitycriteriaforequationsandvariationalinequalitieswithsuchoperators andalsostructuresoftheirsolutionsetshavebeenstudiedfullyenough. However,itisnot always easy to establish the maximal monotonicity of a map. Besides that, the numerical realizationofmaximalmonotoneoperatormeansitschangebysingle-valuedsectionswhen the property of maximal monotonicity is lost. Finally, the monotone operator of the orig- inal problem is not always maximal. Therefore, in this chapter we devote significant time toequationsandvariationalinequalitieswithsemimonotone,pseudomonotoneandgeneral monotone mappings. We describe in detail the known properties of the most important canonical monotone operators, so-called, normalized duality mapping J and duality map- ping with gauge function Jµ. We also present new properties of these mappings expressed bymeansofgeometriccharacteristicsofaBanachspace,itsmodulusofconvexityandmod- ulus of smoothness. Weintroducethenew Lyapunovfunctionals andshow that they have similar properties. In the theory of monotone operators this approach is not traditional and it is first stated in monographic literature. The two last sections of the chapter are dedicatedtoequationswithmultiple-valuedaccretiveandd−accretiveoperators. Chapter2isdevotedtotheoperatorregularizationmethodformonotoneequations(that is,forequationswithmonotoneoperators). Inordertopreservethemonotonicityproperty in a regularized problem, we add to the original operator some one-parameter family of monotone operators. Thus, the resulting operators are monotone again. As a stabilizing operator, we use a duality mapping which has many remarkable properties. In the case ofaHilbertspace,wherethedualitymappingistheidenticaloperator,thisregularization method for linear equations was first studied by M.M. Lavrent’ev [125]. In this chapter, weexploretheoperatorregularizationmethodsformonotone,semimonotoneandaccretive nonlinear equations in Hilbert and Banach spaces. The equations with single-valued and

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.