ebook img

Nonlinear Fokker-Planck equations: fundamentals and applications PDF

413 Pages·2005·2.189 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nonlinear Fokker-Planck equations: fundamentals and applications

Springer Complexity SpringerComplexityisapublicationprogram,cuttingacrossalltraditionaldis- ciplinesofsciencesaswellasengineering,economics,medicine,psychologyand computersciences,whichisaimedatresearchers,studentsandpractitionerswork- inginthefieldofcomplexsystems.ComplexSystemsaresystemsthatcomprise manyinteractingpartswiththeabilitytogenerateanewqualityofmacroscopic collectivebehaviorthroughself-organization,e.g.,thespontaneousformationof temporal,spatialorfunctionalstructures.Thisrecognition,thatthecollectivebe- haviorofthewholesystemcannotbesimplyinferredfromtheunderstandingof thebehavioroftheindividualcomponents,hasledtovariousnewconceptsand sophisticatedtoolsofcomplexity.Themainconceptsandtools–withsometimes overlapping contents and methodologies – are the theories of self-organization, complex systems, synergetics, dynamical systems, turbulence, catastrophes, in- stabilities,nonlinearity,stochasticprocesses,chaos,neuralnetworks,cellularau- tomata,adaptivesystems,andgeneticalgorithms. The topics treated within Springer Complexity are as diverse as lasers or fluids in physics, machine cutting phenomena of workpieces or electric circuits withfeedbackinengineering,growthofcrystalsorpatternformationinchemistry, morphogenesisinbiology,brainfunctioninneurology,behaviorofstockexchange rates in economics, or the formation of public opinion in sociology. All these seeminglyquitedifferentkindsofstructureformationhaveanumberofimportant featuresandunderlyingstructuresincommon.Thesedeepstructuralsimilarities canbeexploitedtotransferanalyticalmethodsandunderstandingfromonefield to another. The Springer Complexity program therefore seeks to foster cross- fertilization between the disciplines and a dialogue between theoreticians and experimentalistsforadeeperunderstandingofthegeneralstructureandbehavior ofcomplexsystems. Theprogramconsistsofindividualbooks,booksseriessuchas“SpringerSe- riesinSynergetics",“InstituteofNonlinearScience",“PhysicsofNeuralNetworks", and“UnderstandingComplexSystems",aswellasvariousjournals. Springer Series in Synergetics SeriesEditor HermannHaken Institutfu¨rTheoretischePhysik undSynergetik derUniversita¨tStuttgart 70550Stuttgart,Germany and CenterforComplexSystems FloridaAtlanticUniversity BocaRaton,FL33431,USA MembersoftheEditorialBoard ÅkeAndersson,Stockholm,Sweden GerhardErtl,Berlin,Germany BernoldFiedler,Berlin,Germany YoshikiKuramoto,Sapporo,Japan Ju¨rgenKurths,Potsdam,Germany LuigiLugiato,Milan,Italy Ju¨rgenParisi,Oldenburg,Germany PeterSchuster,Wien,Austria FrankSchweitzer,Zu¨rich,Switzerland DidierSornette,LosAngeles,CA,USA,andNice,France ManuelG.Velarde,Madrid,Spain SSSyn–AnInterdisciplinarySeriesonComplexSystems ThesuccessoftheSpringerSeriesinSynergeticshasbeenmadepossiblebythe contributionsofoutstandingauthorswhopresentedtheirquiteoftenpioneering resultstothesciencecommunitywellbeyondthebordersofaspecialdiscipline. Indeed,interdisciplinarityisoneofthemainfeaturesofthisseries.Butinterdis- ciplinarity is not enough: The main goal is the search for common features of self-organizing systems in a great variety of seemingly quite different systems, or,stillmorepreciselyspeaking,thesearchforgeneralprinciplesunderlyingthe spontaneous formation of spatial, temporal or functional structures. The topics treatedmaybeasdiverseaslasersandfluidsinphysics,patternformationinchem- istry,morphogenesisinbiology,brainfunctionsinneurologyorself-organization inacity.Asiswitnessedbyseveralvolumes,greatattentionisbeingpaidtothe pivotalinterplaybetweendeterministicandstochasticprocesses,aswellastothe dialoguebetweentheoreticiansandexperimentalists.Allthishascontributedtoa remarkablecross-fertilizationbetweendisciplinesandtoadeeperunderstanding of complex systems. The timeliness and potential of such an approach are also mirrored – among other indicators – by numerous interdisciplinary workshops andconferencesallovertheworld. Till Daniel Frank Nonlinear Fokker–Planck Equations Fundamentals and Applications With86Figuresand18Tables 123 Dr.TillDanielFrank Universita¨tMu¨nster Institutfu¨rTheoretischePhysik Wilhelm-Klemm-Strasse9 48149Mu¨nster,Germany ISSN0172-7389 ISBN3-540-21264-7 SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965, initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsareliable toprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springeronline.com ©Springer-VerlagBerlinHeidelberg2005 PrintedinGermany Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Typesetting:bytheauthor Coverdesign:design&production,Heidelberg Printedonacid-freepaper 55/3141/ts 543210 This book is dedicated to my parents, wife and daughter. Preface Nonlinear Fokker–Planck equations have found applications in various fields such as plasma physics, surface physics, astrophysics, the physics of polymer fluids and particle beams, nonlinear hydrodynamics, theory of electronic cir- cuitryandlaserarrays,engineering,biophysics,populationdynamics,human movement sciences, neurophysics, psychology and marketing. In spite of the diversity of these research fields, many phenomena addressed therein have a fundamental physical mechanism in common. They arise due to cooperative interactions between the subsystems of many-body systems. These cooper- ative interactions result in a reduction of the large number of degrees of freedom of many-body systems and, in doing so, bind the subunits of many- body systems by means of self-organization into synergetic entities. These synergetic many-body systems admit low dimensional descriptions in terms of nonlinear Fokker–Planck equations that capture and uncover the essen- tialdynamicsunderlyingtheobservedphenomena.Thephenomenathatwill be addressed in this book range from equilibrium and nonequilibrium phase transitions and the multistability of systems to the emergence of power law and cut-off distributions and the distortion of Boltzmann distributions. We will study possible asymptotic behaviors of systems such as the approach to stationary distributions and the emergence of nonstationary traveling wave distributions.Wewillbeconcernedwithnormalandanomalousdiffusionand we will examine how correlation functions evolve with time in these kinds of synergetic systems. We will discuss a Fokker–Planck approach to quantum statistics, linear nonequilibrium thermodynamics, and generalized extensive and nonextensive thermostatistics. The aim of this book is to provide an introduction to the theory of non- linear Fokker–Planck equations and to highlight what systems described by nonlinear Fokker–Planck equations have in common. Theoretical considera- tions and concepts will be illustrated by various examples and applications. Due to the ramifications of the theory of nonlinear Fokker–Planck equa- tions in various scientific fields, this book is designed for graduate students and researchers in physics and related fields such as biology, neurophysics, human movement sciences, and psychology. I hope that this book will make graduate students interested in the topic of nonlinear Fokker–Planck equa- VIII Preface tionsandwillmakeresearchersawareoftheconnectionsbetweenthedifferent areas in which nonlinear Fokker–Planck equations have been applied so far. Acknowledgments I am indebted to Professor H. Haken for inviting me to write a book on the topic of nonlinear Fokker–Planck equations for the Springer Series of Synergetics. I am grateful to Professor P.J. Beek and Professor R. Friedrich forsupportingmystudiesonnonlinearFokker-Planckequations.Iwouldlike to thank Dr. A. Daffertshofer for many helpful discussions. Finally, I wish to thank Professor W. Beiglbo¨ck and Ms. B. Reichel-Mayer of the Springer- Verlag for their help in preparing this manuscript. Mu¨nster, Till Daniel Frank September 2004 Contents 1 Introduction.............................................. 1 1.1 Fokker–Planck Equations................................ 1 1.1.1 Brownian Particles and Langevin Equations ......... 1 1.1.2 Many-Body Systems and Mean Field Theory ........ 2 1.2 Phase Transitions and Self-Organization................... 3 1.3 Stochastic Feedback .................................... 5 1.4 Applications ........................................... 7 1.4.1 Collective Phenomena............................. 7 1.4.2 Multistable Systems .............................. 7 1.4.3 Power Law and Cut-Off Distributions ............... 10 1.4.4 Free Energy Systems.............................. 12 1.4.5 Anomalous Diffusion.............................. 15 1.5 Overview.............................................. 16 2 Fundamentals............................................. 19 2.1 Stochastic Processes .................................... 19 2.2 Nonlinear Fokker–Planck Equation ....................... 20 2.2.1 Notation ........................................ 21 2.2.2 Stratonovich Form................................ 21 2.2.3 Transient Solutions ............................... 22 2.2.4 Continuity Equation .............................. 22 2.2.5 Boundary Conditions ............................. 23 2.2.6 Stationary Solutions .............................. 23 2.3 Self-Consistency Equations .............................. 24 2.4 Multistability and Basins of Attraction.................... 25 2.5 Nonlinearity Dimension ................................. 25 2.6 Classifications.......................................... 26 2.7 Derivations ............................................ 28 2.8 Numerics.............................................. 28 2.8.1 Path Integral Solutions............................ 28 2.8.2 Fourier and Moment Expansions ................... 29 2.8.3 Finite Difference Schemes ......................... 29 2.8.4 Distributed Approximating Functionals ............. 30 X Contents 3 Strongly Nonlinear Fokker–Planck Equations ............. 31 3.1 Transformation to a Linear Problem ...................... 31 3.2 What Are Strongly Nonlinear Fokker–Planck Equations? .... 33 3.3 Correlation Functions ................................... 36 3.4 Langevin Equations..................................... 36 3.4.1 Two-Layered Langevin Equations .................. 36 3.4.2 Self-Consistent Langevin Equations................. 38 3.4.3 Hierarchies and Correlation Functions............... 39 3.4.4 Numerics........................................ 39 3.5 Stationary Solutions .................................... 42 3.6 H-Theorem for Stochastic Processes....................... 43 3.7 Nonlinear Families of Markov Processes∗ .................. 46 3.7.1 Linear Versus Nonlinear Families of Markov Processes 46 3.7.2 Linear Families of Markov Processes ................ 47 3.7.3 Nonlinear Families of Markov Diffusion Processes..... 48 3.7.4 Markov Embedding............................... 50 3.7.5 Hitchhiker Processes .............................. 50 3.8 Top-Down Versus Bottom-Up Approaches∗ ................ 52 3.9 Transient Solutions and Transition Probability Densities..... 55 3.9.1 Nonequivalence of Transient Solutions and Transition Probability Densities ................ 55 3.9.2 Gaussian Distributions∗ ........................... 57 3.9.3 Purely Random Processes ......................... 61 3.9.4 Wiener Processes................................. 62 3.9.5 Ornstein–Uhlenbeck Processes ..................... 62 3.9.6 Transient Solutions: Two Examples................. 63 3.10 Shimizu–Yamada Model – Transient Solutions.............. 66 3.11 Fluctuation–Dissipation Theorem......................... 70 4 Free Energy Fokker–Planck Equations .................... 73 4.1 Free Energy Principle ................................... 75 4.2 Maximum Entropy Principle and Relationship between Noise Amplitude and Temperature................ 76 4.3 H-Theorem for Free Energy Fokker–Planck Equations....... 77 4.4 Boltzmann Statistics.................................... 79 4.5 Linear Nonequilibrium Thermodynamics .................. 80 4.5.1 Derivation of Free Energy Fokker–Planck Equations .. 80 4.5.2 Drift and Diffusion Coefficients..................... 84 4.5.3 Transition Probability Densities and Langevin Equations........................... 86 4.5.4 Density Functions ................................ 87 4.5.5 Entropy Production and Conservative Force ......... 87 4.5.6 Stationary Solutions .............................. 88 4.5.7 H-Theorem for Systems with Conservative Forces and Nontrivial Mobility Coefficients ................ 89 Contents XI 4.6 Canonical-Dissipative Systems ........................... 90 4.6.1 Linear Case...................................... 90 4.6.2 Nonlinear Case................................... 92 4.7 Boundedness of Free Energy Functionals∗.................. 96 4.7.1 Distortion Functionals ............................ 97 4.7.2 Kullback Measure and Entropy Inequality ........... 97 4.7.3 Generic Cases and Schlo¨gl’s Decomposition of Kullback Measures ... 100 4.8 First, Second, and Third Choice Thermostatistics........... 107 5 Free Energy Fokker–Planck Equations with Boltzmann Statistics ................................ 109 5.1 Stability Analysis....................................... 110 5.1.1 Lyapunov’s Direct Method ........................ 112 5.1.2 Linear Stability Analysis .......................... 113 5.1.3 Self-Consistency Equation Analysis ................. 115 5.1.4 Shiino’s Decomposition of Perturbations............. 118 5.1.5 Generic Cases.................................... 120 5.1.6 Higher-Dimensional Nonlinearities .................. 126 5.1.7 Multiplicative Noise .............................. 130 5.1.8 Norm for Perturbations∗ .......................... 132 5.2 Natural Boundary Conditions............................ 134 5.2.1 Shimizu–Yamada Model – Stationary Solutions ...... 135 5.2.2 Dynamical Takatsuji Model – Basins of Attraction.... 140 5.2.3 Desai–Zwanzig Model............................. 148 5.2.4 Bounded B(M1)-Model ........................... 152 5.3 Periodic Boundary Conditions ........................... 155 5.3.1 Cluster Amplitude and Cluster Phase............... 156 5.3.2 KSS Model – Cluster Amplitude Dynamics .......... 157 5.3.3 Mean Field HKB Model – Cluster Phase Dynamics ... 167 5.4 Characteristics of Bifurcations ........................... 183 5.4.1 Stability and Disorder ............................ 183 5.4.2 Emergence of Collective Behavior .................. 184 5.4.3 Multistability and Symmetry ...................... 186 5.4.4 Continuous and Discontinuous Phase Transitions ..... 187 5.5 Applications ........................................... 188 5.5.1 Ferromagnetism.................................. 188 5.5.2 Synchronization .................................. 191 5.5.3 Isotropic-nematic Phase Transitions and Maier–Saupe Model........................... 195 5.5.4 Muscular Contraction............................. 202 5.5.5 Network Models for Group Behavior ................ 206 5.5.6 Multistable Perception-Action Systems.............. 209

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.