ebook img

Nonlinear Flow Phenomena and Homotopy Analysis: Fluid Flow and Heat Transfer PDF

197 Pages·2012·2.188 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nonlinear Flow Phenomena and Homotopy Analysis: Fluid Flow and Heat Transfer

Kuppalapalle Vajravelu Robert A. Van Gorder Nonlinear Flow Phenomena and Homotopy Analysis Fluid Flow and Heat Transfer 123 Kuppalapalle Vajravelu Robert A. Van Gorder (cid:47)(cid:80)(cid:79)(cid:77)(cid:74)(cid:79)(cid:70)(cid:66)(cid:83)(cid:1)(cid:39)(cid:77)(cid:80)(cid:88)(cid:1)(cid:49)(cid:73)(cid:70)(cid:79)(cid:80)(cid:78)(cid:70)(cid:79)(cid:66)(cid:1) (cid:66)(cid:79)(cid:69)(cid:1)(cid:41)(cid:80)(cid:78)(cid:80)(cid:85)(cid:80)(cid:81)(cid:90)(cid:1)(cid:34)(cid:79)(cid:66)(cid:77)(cid:90)(cid:84)(cid:74)(cid:84) Fluid Flow and Heat Transfer Kuppalapalle Vajravelu Robert A. Van Gorder Nonlinear Flow Phenomena and Homotopy Analysis Fluid Flow and Heat Transfer With 71 figures 3 Authors KuppalapalleVajravelu RobertA.vanGorder DepartmentofMathematics DepartmentofMathematics UniversityofCentralFlorida UniversityofCentralFlorida OrlandoFlorida32816-1364,USA OrlandoFlorida32816-1364,USA E-mail:kvajravelu@cfl.rr.com E-mail:[email protected] ISBN978-7-04-035449-2 HigherEducationPress,Beijing ISBN978-3-642-32101-6 ISBN978-3-642-32102-3 (eBook) SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2012943603 (cid:2)c HigherEducationPress,BeijingandSpringer-VerlagBerlinHeidelberg2012 Thisworkissubjecttocopyright. AllrightsarereservedbythePublishers,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection withreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeingenteredand executedonacomputersystem,forexclusiveusebythepurchaserofthework. Duplicationofthispub- licationorpartsthereofispermittedonlyundertheprovisionsoftheCopyrightLawofthePublishers’ locations,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. Permis- sionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violationsareliable toprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpubli- cation,neithertheauthorsnortheeditorsnorthepublisherscanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishersmakenowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Foreword “Theessenceofmathematicsliesentirelyinitsfreedom” byGeorgCantor(1845—1918). Solvingnonlinearproblemsisinherentlydifficult.Perturbationtechniquesaremostly usedtogainanalyticapproximationsofnonlinearequations.Unfortunately,pertur- bationmethodsdependtooheavilyonsmallphysicalparameters,andperturbative resultsarevalidonlyincasesofweaknonlinearity.Althoughsomenon-perturbation techniques were developed to overcome the restrictions of perturbation methods, neitherofthemcanguaranteetheconvergenceofapproximationseries. Thehomotopyanalysismethod(HAM)isapromisinganalyticmethodforhighly nonlinearequations,whichhasbeensuccessfullyappliedinscience,appliedmath- ematics,finance,andengineering.Basedontheconceptofhomotopyintopology, thehomotopyanalysismethodisbeingdevelopedtosolvenonlinearproblemsinde- pendentofanysmallphysicalparameters.Especially,theHAMintroducesatotally newconcept“convergence-control”bymeansofthe“convergence-controlparam- eter” that provides a simple way to guarantee the convergence of approximation series.Infact,itis the“convergence-controlparameter”thatmakestheHAMdif- ferentfromallofotheranalyticmethods.Asaresult,unlikeotheranalyticmethods, theHAMisvalidforhighlynonlinearproblems. Thankstocontributionsofmanyresearchersindozensofcountries,theHAMhas beendevelopedandmodifiedgreatlyintheory,andwidelyappliedinmanyfields. Written by two outstanding scholars, the book “Nonlinear Flow Phenomena and Homotopy Analysis” describes some theoretical developments and new attempts oftheHAM, togetherwith typicalapplicationsinflowandheattransferoffluids. Especially,theauthorsdiscussthechoiceofinitialguess,auxiliarylinearoperator, auxiliaryfunction,convergence-controlparameterandso on,fromthe viewpoints ofappliedmathematician.Theselectedexamplesarefundamentalinnatureandare importantfornewuserstounderstandandusetheHAM.Obviously,thisbookisof benefittotheadvancementandwideapplicationoftheHAM. ShijunLiao May26th2012 Preface Overthelastdecade,thehomotopyanalysismethodhascomeintoprevalenceasit allowsonetoconstructreasonablyaccurateapproximationstononlineardifferential equations.Awidevarietyofmathematicalproblems,appearinginareasasdiverse asfluidmechanics,chemicalengineering,biology,finance,theoreticalphysicsand aerospaceengineering,havebeensolvedbymeansofhomotopyanalysis.Though, thehomotopyanalysismethodisfrequentlyemployedintheliterature,therearestill anumberofquestionswhichremainopenregardingthemethod,dueinparttothe generalityofthemethod. In the present monograph,we highlight some of the key points which need to be understoodby those workingin appliedmathematics, physics and applied sci- enceandengineeringinordertoapplythehomotopyanalysismethod.Thatis,the book helps the reader to developthe toolset needed to apply the method,without siftingthroughtheendlessliteratureonthearea.Issuesoftheoptimalselectionof theauxiliarylinearoperator,auxiliaryfunction,convergencecontrolparameter,and initialapproximations,arediscussedheuristically.Furthermore,advancedandless frequentlyseenmethods,suchasmultiplehomotopiesandnonlinearauxiliaryoper- ations,arediscussed.Asmentionedabove,thereareverymanyapplicationsofthe homotopy analysis method in the literature. In selecting applications and specific problems to work through, we have restricted our attention to the fluid phenom- ena of fluid flow and heat transfer as such problems introduce a wide variety of mathematicalproblemsyetallowforasufficientlynarrowfocus.Hence,inorderto illustratevariouspropertiesandtoolsusefulwhenapplyingthehomotopyanalysis method,wehaveselectedrecentresearchintheareaoffluidflowandheattransfer. Weappreciatethesupportandmotivationofprof.A.C.-J.Luo.Wealsoacknowl- edgetheroleofHigherEducationPress(China)andSpringerformakingthisbook areality.K.V.Prasadhelpedintypingsomeoftheexamples. Orlando,Florida KuppalapalleVajravelu 2012 RobertA.VanGorder Contents 1 Introduction................................................... 1 References..................................................... 3 2 PrinciplesofHomotopyAnalysis................................. 7 2.1 Principlesofhomotopyandthehomotopyanalysismethod........ 7 2.2 Constructionofthedeformationequations...................... 9 2.3 Constructionoftheseriessolution ............................ 11 2.4 Conditionsfortheconvergenceoftheseriessolutions ............ 12 2.5 Existenceanduniquenessofsolutionsobtainedbyhomotopy analysis................................................... 14 2.6 Relationsbetweenthe homotopyanalysismethodandother analyticalmethods.......................................... 14 2.7 HomotopyanalysismethodfortheSwift-Hohenbergequation ..... 14 2.7.1 Applicationofthehomotopyanalysismethod ............ 16 2.7.2 Convergenceoftheseriessolutionanddiscussionof results.............................................. 17 2.8 Incompressibleviscousconductingfluidapproachinga permeablestretchingsurface ................................. 21 2.8.1 Exactsolutionsforsomespecialcases................... 23 2.8.2 ThecaseofG(cid:2)=0.................................... 25 2.8.3 ThecaseofG=0.................................... 29 2.8.4 Numericalsolutionsanddiscussionoftheresults.......... 32 2.9 Hydromagneticstagnationpointflowofasecondgradefluidover astretchingsheet........................................... 34 2.9.1 Formulationofthemathematicalproblem................ 38 2.9.2 Exactsolutions ...................................... 38 2.9.3 Constructinganalyticalsolutionsviahomotopyanalysis.... 40 References..................................................... 46 x Contents 3 MethodsfortheControlofConvergenceinObtainedSolutions...... 53 3.1 Selectionofthe auxiliarylinear operatorandbase function representation.............................................. 53 3.1.1 Methodoflinearpartitionmatching..................... 56 3.1.2 Methodofhighestorderdifferentialmatching ............ 57 3.1.3 Methodofcompletedifferentialmatching................ 58 3.1.4 Initialversusboundaryvalueproblems .................. 59 3.1.5 Additionaloptionsfortheselectionofanauxiliary linearoperator....................................... 60 3.1.6 Remarksonthesolutionexpression..................... 60 3.2 Theroleoftheauxiliaryfunction ............................. 61 3.3 Selectionoftheconvergencecontrolparameter.................. 63 3.4 OptimalconvergencecontrolparametervalueandtheLane-Emden equationofthefirstkind..................................... 65 3.4.1 Physicalbackground ................................. 65 3.4.2 AnalyticsolutionsviaTaylorseries ..................... 66 3.4.3 Analyticsolutionsviahomotopyanalysis ................ 69 References..................................................... 75 4 AdditionalTechniques .......................................... 77 4.1 Constructionofmultiplehomotopiesforcoupledequations ....... 77 4.2 Selectionofanauxiliarynonlinearoperator..................... 79 4.3 Validationoftheconvergencecontrolparameter................. 80 4.3.1 Convergencecontrolparameterplots(“h¯-plots”) .......... 80 4.3.2 Minimizedresidualerrors ............................. 80 4.3.3 Minimizedapproximateresidualerrors.................. 82 4.4 Multiplehomotopiesandtheconstructionofsolutionstothe Fo¨ppl-vonKa´rma´nequationsgoverningdeflectionsofathin flatplate .................................................. 82 4.4.1 Physicalbackground ................................. 82 4.4.2 Linearizationandconstructionofperturbationsolutions.... 84 4.4.3 Recursivesolutionsfortheclampededgeboundarydata.... 85 4.4.4 Specialcase:Thethinplatelimith→0,ν2→1........... 87 4.4.5 Controloferrorandselectionoftheconvergencecontrol parameters.......................................... 88 4.4.6 Results............................................. 90 4.5 Nonlinearauxiliaryoperatorsandlocalsolutionstothe Drinfel’d-Sokolovequations ................................. 91 4.6 RecentworkonadvancedtechniquesinHAM .................. 97 4.6.1 Mathematicalpropertiesof h¯-curveintheframeworkof thehomotopyanalysismethod ......................... 97 4.6.2 Predictorhomotopyanalysismethodanditsapplicationto somenonlinearproblems.............................. 98 4.6.3 Anoptimalhomotopy-analysisapproachforstrongly nonlineardifferentialequations......................... 98 Contents xi 4.6.4 On the homotopymultiple-variablemethodandits applicationsintheinteractionsofnonlineargravity waves.............................................. 98 References..................................................... 99 5 ApplicationoftheHomotopyAnalysisMethodtoFluidFlow Problems......................................................101 5.1 ThinfilmflowofaSiskofluidonamovingbelt .................102 5.1.1 Mathematicalanalysisoftheproblem ...................103 5.1.2 Applicationofthehomotopyanalysismethod ............106 5.1.3 Numericalresultsanddiscussion .......................108 5.2 Nanoboundarylayersoverstretchingsurfaces ..................112 5.2.1 Formulationoftheproblem............................113 5.2.2 Applicationofthehomotopyanalysismethod ............115 5.2.3 Analyticalsolutionsviathehomotopyanalysismethod ....116 5.2.4 Numericalsolutions..................................118 5.2.5 Discussionoftheresults ..............................121 5.3 Rotatingflowofathirdgradefluidbyhomotopyanalysis method ...................................................123 5.3.1 Mathematicalformulation.............................124 5.3.2 Solutionoftheproblem...............................126 5.3.3 Resultsanddiscussions ...............................129 5.4 Homotopyanalysisforboundarylayerflowofamicropolarfluid throughaporouschannel ....................................133 5.4.1 Descriptionoftheproblem ............................134 5.4.2 HAMsolutionsforvelocityandmicro-rotationfields ......136 5.4.3 Convergenceofthesolutions ..........................139 5.4.4 Resultsanddiscussion................................140 5.5 Solution of unsteady boundary-layerflow caused by an impulsivelystretchingplate ..................................142 5.5.1 Mathematicaldescription .............................143 5.5.2 Homotopyanalyticsolution ...........................145 5.5.3 Resultsanddiscussion................................147 References.....................................................151 6 FurtherApplicationsoftheHomotopyAnalysisMethod............157 6.1 Seriessolutionsofanonlinearmodelofcombinedconvectiveand radiativecoolingofaspherical ...............................157 6.1.1 Basicequations......................................157 6.1.2 SeriessolutionsgivenbytheHAM .....................159 6.1.3 Resultanalysis ......................................164 6.1.4 Conclusionsanddiscussions...........................169 6.2 Anill-posedproblemrelatedtotheflowofathinfluidfilmover asheet....................................................171 6.2.1 Introductionandphysicalmotivation....................171 xii Contents 6.2.2 Formulationofthethree-parameterproblem..............173 6.2.3 Arelatedfour-parameterill-posedproblem...............175 6.2.4 Analyticalsolutionfor f(η)viathehomotopyanalysis method.............................................178 6.2.5 Resultsanddiscussion................................181 References.....................................................184 SubjectIndex ......................................................185 AuthorIndex ......................................................187

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.