ebook img

Nonlinear Estimation-Methods and Applications with Deterministic Sample Points PDF

277 Pages·2019·14.928 MB·\277
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nonlinear Estimation-Methods and Applications with Deterministic Sample Points

Nonlinear Estimation Methods and Applications with Deterministic Sample Points Nonlinear Estimation Methods and Applications with Deterministic Sample Points Shovan Bhaumik Paresh Date MATLAB(cid:114) and Simulink(cid:114) are a trademark of The MathWorks, Inc. and is used with permission.TheMathWorksdoesnotwarranttheaccuracyofthetextorexercisesinthis book.Thisbook’suseordiscussionofMATLAB(cid:114)andSimulink(cid:114)softwareorrelatedprod- ucts does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogicalapproachorparticularuseoftheMATLAB(cid:114) andSimulink(cid:114) software. CRCPress Taylor&FrancisGroup 6000BrokenSoundParkwayNW,Suite300 BocaRaton,FL33487-2742 (cid:13)c 2020byTaylor&FrancisGroup,LLC CRCPressisanimprintofTaylor&FrancisGroup,anInformabusiness NoclaimtooriginalU.S.Governmentworks Printedonacid-freepaper InternationalStandardBookNumber-13:978-0-8153-9432-7(Hardback) Thisbookcontainsinformationobtainedfromauthenticandhighlyregardedsources.Rea- sonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the conse- quences of their use. The authors and publishers have attempted to trace the copyright holdersofallmaterialreproducedinthispublicationandapologizetocopyrightholdersif permissiontopublishinthisformhasnotbeenobtained.Ifanycopyrightmaterialhasnot beenacknowledgedpleasewriteandletusknowsowemayrectifyinanyfuturereprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means,nowknownorhereafterinvented,includingphotocopying,microfilming,andrecord- ing,orinanyinformationstorageorretrievalsystem,withoutwrittenpermissionfromthe publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com(http://www.copyright.com/)orcontacttheCopyrightClearanceCen- ter, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not- for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system ofpaymenthasbeenarranged. Trademark Notice:Productorcorporatenamesmaybetrademarksorregisteredtrade- marks,andareusedonlyforidentificationandexplanationwithoutintenttoinfringe. LibraryofCongressControlNumber:2019946259 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com To my parents Shovan To Bhagyashree Paresh Contents Preface xiii About the Authors xvii Abbreviations xix Symbol Description xxi 1 Introduction 1 1.1 Nonlinear systems . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Continuous time state space model . . . . . . . . . . . 2 1.1.2 Discrete time state space model . . . . . . . . . . . . . 3 1.2 Discrete time systems with noises . . . . . . . . . . . . . . . 5 1.2.1 Solution of discrete time LTI system . . . . . . . . . . 6 1.2.2 States as a Markov process . . . . . . . . . . . . . . . 6 1.3 Stochastic filtering problem . . . . . . . . . . . . . . . . . . . 7 1.4 Maximum likelihood and maximum a posterori estimate . . . 8 1.4.1 Maximum likelihood (ML) estimator . . . . . . . . . . 8 1.4.2 Maximum a posteriori (MAP) estimate . . . . . . . . 9 1.5 Bayesian framework of filtering . . . . . . . . . . . . . . . . . 9 1.5.1 Bayesian statistics . . . . . . . . . . . . . . . . . . . . 9 1.5.2 RecursiveBayesianfiltering:aconceptualsolution . . . 10 1.6 Particle filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.6.1 Importance sampling . . . . . . . . . . . . . . . . . . . 12 1.6.2 Resampling . . . . . . . . . . . . . . . . . . . . . . . . 15 1.7 Gaussian filter . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.7.1 Propagation of mean and covariance of a linear system . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.7.2 Nonlinear filter with Gaussian approximations . . . . 19 1.8 Performance measure . . . . . . . . . . . . . . . . . . . . . . 22 1.8.1 When truth is known . . . . . . . . . . . . . . . . . . 22 1.8.2 When truth is unknown . . . . . . . . . . . . . . . . . 23 1.9 A few applications . . . . . . . . . . . . . . . . . . . . . . . . 23 1.9.1 Target tracking . . . . . . . . . . . . . . . . . . . . . . 23 1.9.2 Navigation . . . . . . . . . . . . . . . . . . . . . . . . 24 vii viii Contents 1.9.3 Process control . . . . . . . . . . . . . . . . . . . . . . 24 1.9.4 Weather prediction . . . . . . . . . . . . . . . . . . . . 24 1.9.5 Estimating state-of-charge (SoC) . . . . . . . . . . . . 24 1.10 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.11 Organization of chapters . . . . . . . . . . . . . . . . . . . . 25 2 The Kalman filter and the extended Kalman filter 27 2.1 Linear Gaussian case (the Kalman filter) . . . . . . . . . . . 27 2.1.1 Kalman filter: a brief history . . . . . . . . . . . . . . 27 2.1.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . 28 2.1.3 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.1.4 Properties: convergence and stability . . . . . . . . . . 31 2.1.5 Numerical issues . . . . . . . . . . . . . . . . . . . . . 32 2.1.6 The information filter . . . . . . . . . . . . . . . . . . 33 2.1.7 Consistency of state estimators . . . . . . . . . . . . . 34 2.1.8 Simulation example for the Kalman filter . . . . . . . 35 2.1.9 MATLAB(cid:114)-based filtering exercises . . . . . . . . . . 37 2.2 The extended Kalman filter (EKF) . . . . . . . . . . . . . . 38 2.2.1 Simulation example for the EKF . . . . . . . . . . . . 40 2.3 Important variants of the EKF . . . . . . . . . . . . . . . . . 43 2.3.1 The iterated EKF (IEKF) . . . . . . . . . . . . . . . . 43 2.3.2 The second order EKF (SEKF) . . . . . . . . . . . . . 45 2.3.3 Divided difference Kalman filter (DDKF) . . . . . . . 45 2.3.4 MATLAB-based filtering exercises . . . . . . . . . . . 49 2.4 Alternative approaches towards nonlinear filtering . . . . . . 49 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3 Unscented Kalman filter 51 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2 Sigma point generation . . . . . . . . . . . . . . . . . . . . . 52 3.3 Basic UKF algorithm . . . . . . . . . . . . . . . . . . . . . . 54 3.3.1 Simulation example for the unscented Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.4 Important variants of the UKF . . . . . . . . . . . . . . . . . 60 3.4.1 Spherical simplex unscented transformation . . . . . . 60 3.4.2 Sigma point filter with 4n+1 points . . . . . . . . . . 61 3.4.3 MATLAB-based filtering exercises . . . . . . . . . . . 64 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4 Filters based on cubature and quadrature points 65 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2 Spherical cubature rule of integration . . . . . . . . . . . . . 66 Contents ix 4.3 Gauss-Laguerre rule of integration . . . . . . . . . . . . . . . 67 4.4 Cubature Kalman filter . . . . . . . . . . . . . . . . . . . . . 68 4.5 Cubature quadrature Kalman filter . . . . . . . . . . . . . . 70 4.5.1 Calculation of cubature quadrature (CQ) points . . . 70 4.5.2 CQKF algorithm . . . . . . . . . . . . . . . . . . . . . 71 4.6 Square root cubature quadrature Kalman filter . . . . . . . . 75 4.7 High-degree (odd) cubature quadrature Kalman filter . . . . 77 4.7.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.7.2 High-degree cubature rule . . . . . . . . . . . . . . . . 77 4.7.3 High-degree cubature quadrature rule . . . . . . . . . 79 4.7.4 Calculation of HDCQ points and weights . . . . . . . 80 4.7.5 Illustrations . . . . . . . . . . . . . . . . . . . . . . . . 80 4.7.6 High-degree cubature quadrature Kalman filter . . . . 86 4.8 Simulation examples . . . . . . . . . . . . . . . . . . . . . . . 87 4.8.1 Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.8.2 Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5 Gauss-Hermite filter 95 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.2 Gauss-Hermite rule of integration . . . . . . . . . . . . . . . 96 5.2.1 Single dimension . . . . . . . . . . . . . . . . . . . . . 96 5.2.2 Multidimensional integral . . . . . . . . . . . . . . . . 97 5.3 Sparse-grid Gauss-Hermite filter (SGHF) . . . . . . . . . . . 99 5.3.1 Smolyak’s rule . . . . . . . . . . . . . . . . . . . . . . 100 5.4 Generation of points using moment matching method . . . . 104 5.5 Simulation examples . . . . . . . . . . . . . . . . . . . . . . . 105 5.5.1 Tracking an aircraft . . . . . . . . . . . . . . . . . . . 105 5.6 Multiple sparse-grid Gauss-Hermite filter (MSGHF) . . . . . 109 5.6.1 State-space partitioning . . . . . . . . . . . . . . . . . 109 5.6.2 Bayesian filtering formulation for multiple approach . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.6.3 Algorithm of MSGHF . . . . . . . . . . . . . . . . . . 111 5.6.4 Simulation example . . . . . . . . . . . . . . . . . . . 113 5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6 Gaussian sum filters 117 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.2 Gaussian sum approximation . . . . . . . . . . . . . . . . . . 118 6.2.1 Theoretical foundation . . . . . . . . . . . . . . . . . . 118 6.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . 120 6.2.3 Multidimensional systems . . . . . . . . . . . . . . . . 121 6.3 Gaussian sum filter . . . . . . . . . . . . . . . . . . . . . . . 122

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.