Nonlinear Dynamical Systems in Engineering . Vasile Marinca (cid:129) Nicolae Herisanu Nonlinear Dynamical Systems in Engineering Some Approximate Approaches VasileMarinca NicolaeHerisanu PolitehnicaUniversityofTimisoara PolitehnicaUniversityofTimisoara DepartmentofMechanicsandVibrations DepartmentofMechanicsandVibrations Bd.MihaiViteazu1 Bd.MihaiViteazu1 300222Timisoara 300222Timisoara Romania Romania RomanianAcademy,TimisoaraBranch, RomanianAcademy,TimisoaraBranch, CenterforAdvancedandFundamental CenterforAdvancedandFundamental TechnicalResearch, TechnicalResearch, Bd.M.Viteazu, 24 Bd.M.Viteazu, 24 300223Timis¸oara 300223Timis¸oara Romania Romania [email protected] [email protected] ISBN978-3-642-22734-9 e-ISBN978-3-642-22735-6 DOI10.1007/978-3-642-22735-6 SpringerHeidelbergDordrechtLondonNewYork LibraryofCongressControlNumber:2011941777 # Springer-VerlagBerlinHeidelberg2011 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965, initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsareliable toprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Thepractice ofsciencecouldbedescribedastheprocessofobservation followed bytheconstructionofverbalormathematicalmodelstoexplaintheobservations,or vice-versa. The use of the mathematical models implies that the observations are quantitative, that they involve numbers used to specify the observations. The successfulapplicationofanysciencedependsontheuseofanappropriatemixture of principles, techniques and approaches. Sometimes principles are easily under- stood,sometimessodifficultastobeopaque.Oftensomerejectiontakesrootinthe drymathematicalforminwhichthesubjectispresented,unrelatedtoobservation, quiteirrelevanttolife,andlackinganyformofinterest.Settingproblemsbasedona wide variety of experience should engage interest, challenge and intelligence and evenstimulatecuriosity.Thewealthofdetailofferedshouldnotlullthereaderinto thinking that the material can be meaning by leafing through the book. As much timeaspossibleitshouldbedevotedtogoingthroughthecalculationsandsolving problems. Analytical solutions to nonlinear differential equations or linear differential equationswithvariablecoefficientsplayanimportantroleinthestudyofnonlinear dynamical systems, but sometimes it is difficult to find these solutions, especially for nonlinear problems with strong nonlinearity. In general, the known analytical methodsarerestrictedtolimitedcasesdependingontheparameterswhichappear in the governing equations and are valid only for nonlinear problems with weak nonlinearity. Dynamicalsystemsareavastsubject.Itisoftenfoundthatthegoinggetseasier as one goes deeper, learning the mathematical connections tying together the variousphenomena.Thematerialofthisbookcanbeincludedincoursescovering thetheoryofnonlinearoscillations,thetheoryofelectricalmachines,classicaland fluidmechanics,thermodynamicsorevenbiology. Theprerequisitesforstudyingdynamicalsystemsusingthisbookareundergrad- uate courses inlinear algebra, real and complexanalysis,calculus, dynamics,and ordinary differential equations, classical physics of oscillations, knowledge of a computer language would be essential. Also, it is assumed that the reader knows basic notions about nonlinear systems of differential equations as well as the v vi Preface plottingofphaseportraits,analysisofnonlinearsystems,andgraphicalrepresenta- tionoferrorsandsoon. Thisbookisinformedbytheresearchinterestoftheauthors,whicharecurrently nonlinear differential equations. Some references include recently published research articles. Our work has very hands-on approaches and takes the reader fromthebasicmethodsrightthroughtorecentlypublishedresearchmaterial. Most of the material in every chapter is at postgraduate level and has been influenced by the authors’ own research interest. These chapters are especially usefulasreferencematerialforseniorundergraduateprojectwork. The text is aimed to undergraduate students in accelerated programs, working scientists in various branches of engineering, natural scientists or applied mathematicians. Thewholebookconsistsofconcreteexamplesfromvariousdomainsofnonlin- eardynamicalsystems.Theauthorsbelievethattheproblemofmotionofdifferent dynamical systems can be assimilated only by working with the differential equations applied to concrete examples. Nearly all the sections of this book are followedbycomparisonswithnumericalresultsorwithotherknownresultsinthe literature. The aim of this book is to present and extend different known methods in the literature,especiallyLindstedt-Poincare´ method,themethodofharmonicbalance, the method of Krylov-Bogolyubov and the method of multiple scales, to solve differenttypesofstrongnonlinearities.Abetterknowledgeofthesemethodsleadto abetterchoiceoftheso-called“basefunctions”whichareabsolutelynecessaryto obtaintheauxiliaryfunctionspresentinthelastChapters,devotedtosomeoptimal analytical approaches. These auxiliary functions are cornerstone of the optimal methodsandalso,ensuretheconditionsofconvergenceofthesolutionsobtainedby different approaches. Unlike all previous analytic approaches, these few optimal methodsprovideuswithasimplewaytocontrolandadjusttheconvergenceregion ofsolutionsofnonlineardynamicalsystems.Thesenewoptimalmethodsshowone stepintheattempttodevelopanewnonlinearanalyticaltechniqueworkinginthe absenceofsmallorlargeparameters.Actually,thecapitalstrengthofouroptimal procedures is the fast convergence, since after only two or three iterations, or sometimesafteronlyoneiteration,itconvergestotheexactsolution,whichproves thattheseoptimalmethodsareveryefficientinpractice. The text begins with some known procedures, presented in Chaps. 1–4: the Lindstedt-Poincare´ method, the method of harmonic balance, the method of Krylov-Bogolyubov and the method of multiple scales. All these techniques sup- pose the presence of a small parameter into the governing nonlinear equations. There are presented some alternatives and examples to each of these approaches, suchastheuseofperturbationmethodforstrongparameter,therationalharmonic balancemethod,acombinationofthemethodofKrylov-Bogolyubovanditeration method.Thelastfourchapters,from5to8aredevotedtooptimalapproachessuch as: the Optimal Homotopy Asymptotic Method, the Optimal Homotopy Perturba- tionMethod,theOptimalVariationalIterationMethodandtheOptimalParametric Iteration Method. The validity of the proposed procedures has been demonstrated Preface vii onsomerepresentativeexamplesandverygoodagreementwasfoundbetweenthe approximate analytic results and numerical simulations. The convergence of the approximatesolutionsobtainedbyeachofthesenewmethodsisgreatlyinfluenced bytheconvergence-controlconstantswhichareoptimallydetermined. Theexamplespresentedinthisbookleadtotheconclusionthattheaccuracyof theobtainedresultsisgrowingalongwithincreasingthenumberofconstantsinthe auxiliary functions. These methods are very rapid and effective and show their validity and potential for the solution of nonlinear problems arising in dynamical systems. Finally,ourmainaimistoinspirethereadertoappreciatethebeautyaswellas the usefulness of the optimal analytical techniques in the study of nonlinear dynamicalsystems. Timis¸oara VasileMarinca NicolaeHeris¸anu . Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 PerturbationMethod:Lindstedt-Poincare´. . . . . . . . . . . . . . . . . . . . 9 2.1 TheOscillatorwithCubicElasticRestoringForce. . . . . . . . . . . 14 2.1.1 TheExactSolutionofDuffingEquation. . . . . . . . . . . . . 14 2.1.2 UseofthePerturbationMethodforDuffingOscillator withSmallParameter. . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.3 UseofthePerturbationMethodforDuffingOscillators withStrongParameter. . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 TheMethodofHarmonicBalance. . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1 FreeVibrationsofCantileverBeam. . . . . . . . . . . . . . . . . . . . . . 35 3.2 RationalHarmonicBalanceMethod. . . . . . . . . . . . . . . . . . . . . 40 4 TheMethodofKrylovandBogolyubov. . . . . . . . . . . . . . . . . . . . . . 47 4.1 OscillatorwithLinearandCubicElasticRestoringForce andWeakAsymmetricQuadraticDamping. . . . . . . . . . . . . . . . 53 4.2 UseoftheMethodofKrylov-BogolyubovandIteration MethodtoWeaklyNonlinearOscillators. . . . . . . . . . . . . . . . . . 60 4.2.1 “Nonresonance”Case(o6¼pO). . . . . . . . . . . . . . . . . . . 61 q 4.2.2 “Resonance”Caseo(cid:2)pO. . . . . . . . . . . . . . . . . . . . . . 66 q 4.2.3 NumericalExamples. . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5 TheMethodofMultipleScales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.1 DuffingOscillatorwithSofteningNonlinearity. . . . . . .. . . . . .. 89 5.2 AParametricSystemwithCubicNonlinearityCoupled withaLanchesterDamper. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6 TheOptimalHomotopyAsymptoticMethod. . . . . . . . . . . . . . . . . . 103 6.1 BasicIdeaofOHAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.2 DuffingOscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.2.1 NumericalExamples. . . . . . . . . . . . . . . . . . . . . . . . . . . 114 ix x Contents 6.3 ThinFilmFlowofaFourthGradeFluidDown aVerticalCylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.4 DampedOscillatorwithFractional-OrderRestoringForce. . . . . 120 6.4.1 NumericalExamples. . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.5 NonlinearEquationsArisinginHeatTransfer. . . . . . . . . . . . . . 127 6.5.1 CoolingofaLumpedSystemwith VariableSpecificHeat. . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.5.2 TheTemperatureDistributionEquationina ThickRectangularFinRadiationtoFreeSpace. . . . . . . . 131 6.6 Blasius’Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.7 OscillationsofaUniformCantileverBeamCarrying anIntermediateLumpedMassandRotaryInertia. . . . . . . . . . . . 143 6.8 OscillationsofanElectricalMachine. . . . . . . . . . . . . . . . .. . . . 151 6.9 OscillationsofaMassAttachedtoaStretchedElasticWire. . . . 156 6.10 NonlinearOscillatorwithDiscontinuities. . . . . . . . . . . . . . . . . . 162 6.11 NonlinearJerkEquations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 6.12 TheMotionofaParticleonaRotatingParabola. . . . . . . . . . . . 173 6.13 NonlinearOscillatorwithDiscontinuities andFractional-PowerRestoringForce. . . . . . . . . . . . . . . . . . . . 184 6.14 OscillationsofaFlexibleCantileverBeam withSupportMotion. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 191 6.15 TheJeffery-HamelFlowProblem. . . . . . . . . . . . . . . . . . . . . . . 197 6.15.1 NumericalExamples. . . . . . . . . . . . . . . . . . . . . . . . . . 206 7 TheOptimalHomotopyPerturbationMethod. . . . . . . . . . . . . . . . . 211 7.1 HomotopyPerturbationMethod. . . . . . . . . . . . . . . . . . . . . . . . 211 7.2 ModifiedHomotopyPerturbationMethod. . . . . . . . . . . . . . . . . 214 7.3 BasicIdeaofOptimalHomotopyPerturbationMethod andSomeApplications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 7.4 AHeatTransferProblem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 7.5 ThinFilmFlowofaFourthGradeFluidDown aVerticalCylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 7.6 NonlinearDynamicsofanElectricalMachine Rotor-BearingSystem. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . 240 7.7 ANon-conservativeOscillatorySystemofaRotating ElectricalMachine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 8 TheOptimalVariationalIterationMethod. . . . . . . . . . . . . . . . . . . . 259 8.1 TheVariationalIterationMethodandApplications. . . . . . . . .. . 259 8.1.1 NonlinearOscillatorwithQuadratic andCubicNonlinearities. . . . . . . . . . . . . . . . . . . . . . . . 264 8.1.2 AFamilyofNonlinearDifferentialEquations. . . . . . . . . 270 8.1.3 TheDuffingEquation. . . . . . . . . . . . . . . . . . . . . . . . . . 271 8.2 MathematicalDescriptionoftheOptimalVariational IterationMethod. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 275