ebook img

Nonlinear Dynamic Phenomena in Mechanics PDF

285 Pages·2012·18.409 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nonlinear Dynamic Phenomena in Mechanics

Nonlinear Dynamic Phenomena in Mechanics SOLIDMECHANICSANDITSAPPLICATIONS Volume181 SeriesEditor: G.M.L.GLADWELL DepartmentofCivilEngineering UniversityofWaterloo Waterloo,Ontario,CanadaN2L3GI AimsandScopeoftheSeries Thefundamentalquestionsarisinginmechanicsare:Why?,How?,andHowmuch? The aim of this series is to provide lucid accounts written by authoritative re- searchersgiving vision and insight in answering these questionson the subject of mechanicsasitrelatestosolids. The scope of the series coversthe entire spectrum of solid mechanics.Thus it in- cludes the foundation of mechanics; variational formulations; computational me- chanics;statics, kinematicsanddynamicsofrigidandelasticbodies:vibrationsof solidsandstructures;dynamicalsystemsandchaos;thetheoriesofelasticity,plas- ticityandviscoelasticity;compositematerials;rods,beams,shellsandmembranes; structuralcontrolandstability;soils, rocksand geomechanics;fracture;tribology; experimentalmechanics;biomechanicsandmachinedesign. The medianlevelof presentationis the first year graduatestudent.Some textsare monographsdefiningthecurrentstateofthefield;othersareaccessibletofinalyear undergraduates;butessentiallytheemphasisisonreadabilityandclarity. Forothertitlespublishedinthisseries,goto www.springer.com/series/6557 Jerzy Warminski, Stefano Lenci, Matthew P. Cartmell, Giuseppe Rega, and Marian Wiercigroch (Eds.) Nonlinear Dynamic Phenomena in Mechanics ABC Editors JerzyWarminski GiuseppeRega LublinUniversityofTechnology SapienzaUniversityofRome Nadbystrzycka36 DepartmentofStructuraland 20-618Lublin GeotechnicalEngineering Poland ViaAntonioGramsci53 E-mail:[email protected] 00197Roma Italy StefanoLenci E-mail:[email protected] PolytechnicUniversityofMarche DepartmentofArchitecture, MarianWiercigroch BuildingsandStructures UniversityofAberdeen ViaBrecceBianche SchoolofEngineering 60131Ancona CentreforAppliedDynamics Italy Research(CADR) E-mail:[email protected] King’sCollege AB243UEAberdeen MatthewP.Cartmell UnitedKingdom UniversityofGlasgow E-mail:[email protected] SchoolofEngineering JamesWattSouthBuilding G128QQGlasgow UnitedKingdom E-mail:[email protected] ISBN978-94-007-2472-3 e-ISBN978-94-007-2473-0 DOI10.1007/978-94-007-2473-0 LibraryofCongressControlNumber:2011936650 (cid:2)c 2012Springer-VerlagBerlinHeidelberg Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthemate- rialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting, reproduction onmicrofilmor inanyother way, andstorage indatabanks. Dupli- cationofthispublicationorpartsthereof ispermittedonlyunder theprovisions oftheGerman CopyrightLawofSeptember9,1965,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.ViolationsareliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoes notimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Typeset&CoverDesign:ScientificPublishingServicesPvt.Ltd.,Chennai,India. Printedonacid-freepaper 987654321 springer.com Preface Nonlinearphenomenashouldplayacrucialroleinthedesignandcontrolofengi- neeringsystemsandstructuresastheycandrasticallychangetheprevailingdynam- icalresponses.Forexample,bifurcationsortransitionstoirregularity(chaos)may completely alter intuitively expected behaviour. Dealing with nonlinear dynamic phenomenarequires special analytical treatment and dedicated control techniques to harness the effects of unpredictable behaviour. In many cases, formulating an appropriate nonlinearmathematicalmodel of a real structure or system would be essentialtoobtainabroadknowledgeoftherelevantresponseandtheinfluenceof itsparameters. Nonlinearmechanicsisclassicalin origin,howeveritsapplicationsaremodern andtheyarevastinscienceandengineering.Inspiteofthefactthatlinearmodels areincommonuse,inmanypracticalproblemscertainkeyeffectscanbeexplained onlybyexplorationofnonlinearmodels. The origin of this book is a series of lectures given in the frame of the Trans- fer of Knowledge Project led by Prof. Tomasz Sadowski of Lublin University of Technology on ’Modern Composite Materials Applied in Aerospace, Civil and SanitaryEngineering:TheoreticalModellingandExperimentalVerification’(con- tract MTKD-CT-2004-014058) and the FP7 Project ’Centre of Excellence for Modern Composites Applied in Aerospace and Surface Transport Infrastructure’ (CEMCAST,FP7-REGPOT-20091,grantagreementNo:245479).Thementioned projectsaccommodatedtwogroupsofresearchers:one,workinginthefieldofmod- ernmaterialsmechanics,andtheother,workinginnonlineardynamics,bifurcation, chaos theory and control. Some of the results obtained by the latter are included in this book, whose scope covers theoretical and applications-based problems of nonlineardynamics.Inthepresentedchaptersthenewestmethodsofnonlinearme- chanicsareappliedtoelucidatearichvarietyoffeaturesofsystemresponseandthe latest controltechniquesare used to enhancethe dynamicsor to reduceundesired responses. Besides composite structures and systems with controllable and adap- tiveproperties,flexiblestructuresandnon-smoothproblemsareaddressed,paying properattentiontorealapplications. VI Preface So called small nonlinearities very often result in large qualitative and quan- titative changes in structural dynamics. As a classical example we may mention pendulum-likesystems addressed in Chap. 1. In practice, a pendulumcan be used asadynamicabsorbermountedinhighbuildings,bridgesorchimneys.Swingsof the pendulumcan suppress oscillations of the primary structure which then oscil- lateswithaverysmallamplitudeornotatall.However,geometricalnonlinearities introducedby pendulummotionmay changethe system dynamics,and instead of theexpectedresponsewecanobservearapidincreaseoftheoscillationsofboththe pendulumandthestructure,leadingtofullpendulumrotationorchaoticdynamics. Thereasonforsuchbehaviourisrelatedtoautoparametriccouplingresultinginthe occurrenceofinstabilityzones.Toavoidsuchdangeroussituationstheproperselec- tionofparametersortheintroductionofsemi-activemagnetorheologicaldampingis proposed.OnthebasisoftheanalyticalsolutionsofanonlineartwoDOFmodelthe resonanceandinstabilityregionsaredetected,andthenchaoticoscillations,bifurca- tionpointsandtransitionpathsfromregulartochaoticvibrationsaredeterminedby numericaltechniques.Theoreticalresultsarevalidatedbyrealexperimentaltests. Nonlinearmechanicsalso hasto beused toexplainundesiredresponseinslen- der footbridges. Motivation for research in this topic was the famous example of the London Millenium Bridge event. Strong horizontalvibrations, caused by syn- chronisationofpedestrianmotions,wereinducedonitsopeningday.Theproblem of pedestrian inducedlateral vibrationsmay occurin bridgesof variousstructural typesandmaterials.TheparametricstudypresentedinChap.2allowsabetterun- derstandingofthestructuralmechanicsandalsothedetectionofregionsofincreas- ingvibration.Theobservedphenomenacanbeexplainedbyananalyticalnonlinear discrete-time model based on the stroboscopic Poincare´ map which then enables the location of instability regionsand the predictionof the number of pedestrians required to trigger synchronisation of the structure. The analytical formula gives reliable values which are in goodqualitative and quantitative agreementwith real examplesandobservations. Smart active or semi-active elements, like for example: magnetorheological dampers,piezoelectricpatchesorshapememoryalloysactuatorsembeddedinside thestructure,togetherwithrobustcontrolalgorithms,mayeliminateregionsofdan- gerousbehaviour.Alsowemaytakeadvantageofthenonlinearphenomenatode- sign an active structure to work more effectively. Shape memory alloys (SMAs) exhibitsveryinterestingnonlinearthermo-mechanicalpropertiessuchastheshape memoryeffectandsuperelasticity.Methodologiesforintegratingshapememoryal- loy elements are based on active property tuning (APT) and active strain energy tuning(ASET).Chapter3presentsdetailsofthemodellingoftheSMAeffectand applicationsforSMAwiresembeddedinmechanicalstructurestocontroltheirdy- namics.SMAelementsintegratedwithincompositebeamsorplatescanbeusedfor activemodificationofstructurepropertiese.g.byaffectingtheirnaturalfrequencies. Itisshownthattheresonantcharacteristicsofsuchhostscanbesignificantlyaltered byactivationoftheembeddedelements.Thisconceptisextendedtoshell-likestruc- tures, specifically tubular bearing housingsused to locate flexible rotors, and also Preface VII tomorecomplexplategeometriesinwhichtheSMAisarrangedinaperiodicand repeatingstructureinordertocontrolmultiplemodesofvibration. Recent advancementsin the theoretical and experimentalresearch on the finite amplitude,resonant,forceddynamicsofsagged,horizontalorinclined,elasticca- blesarepresentedinChap.4,byconsideringmodelling,analysis,response,and,in particular,nonlinear/nonregularphenomena.Asymptoticsolutionsanda richvari- etyoffeaturesofnonlinearmultimodalinteractionoccurringinvariousresonance conditions are comparatively discussed. Dynamical and mechanical characteris- ticsof someofthe principal,experimentallyobserved,responsesaresummarized, along with the relevant robustness, spatio-temporal features, and dimensionality. Challenging issues arising in the characterization of involved bifurcation scenar- iosresultingintransitionto complexdynamicsare addressed,andhintsforproper reduced-ordermodelling in cable nonlinear dynamics are obtained based on both asymptoticsolutionsandexperimentalinvestigations,in the perspectiveof a prof- itablecross-validationoftheobservednonlinearphenomena. The importance of non-smooth dynamical systems, which are very common in engineeringpracticeisdiscussedinChap.5.Mathematically,suchsystemscanbe consideredaslocallysmoothandthereforetheglobalsolutionisobtainedbystitch- inglocalsolutions,whichcanbedeterminedbystandardmethods.Ifthedynamical systemispiecewiselinearthenanimplicitglobalanalyticalsolutioncanbegiven, howevertheoccurrencesofnon-smoothnesshavefirsttobedetermined.Thisleads tothenecessityofsolvingasetofnonlinearalgebraicequations.Toillustratenon- smoothproblemsandthemethodologyforsolvingthem,threemechanicalengineer- ingexamplesarestudied:(i)avibro-impactsystemintheformofamolingdevice, (ii) the influenceof the openingandclosing of afatigue crack on the hostsystem dynamics,and(iii)nonlinearinteractionsbetweenarotorandsnubberringsystem. Thetheoreticalresultshavebeenobtainedfromthedevelopedmathematicalmodels andconfirmedbyexperimentaltests,withagooddegreeofcorrelation. Thisbookisaimedatawide audienceof engineersandresearchersworkingin the field of nonlinear structural vibrations and dynamics, and undergraduate and postgraduatestudentsreadingmechanical,aerospaceandcivilengineering. Lublin,Ancona,Glasgow,Roma,Aberdeen JerzyWarminski December2010 StefanoLenci MatthewCartmell GiuseppeRega MarianWiercigroch Acknowledgements ”TheresearchleadingtotheseresultshasreceivedfundingfromtheEuropeanUnion SeventhFrameworkProgramme(FP7/2007-2013),FP7-REGPOT-2009-1,under grantagreementNo:245479”. Contents AutoparametricVibrationsofaNonlinearSystemwithaPendulumand MagnetorheologicalDamping ..................................... 1 JerzyWarminski,KrzysztofKecik 1 IntroductiontoAutoparametricVibrations .................... 2 2 ModeloftheNonlinearOscillatorwithanAttachedPendulum ... 3 2.1 DifferentialEquationsofMotionofaModelwitha ViscousDamper .................................. 4 2.2 ApplicationofMagnetorheological(MR)Damper ...... 5 3 ApproximateAnalyticalSolutionsandTheirStability........... 7 3.1 HarmonicBalanceMethod.......................... 8 3.2 StabilityofAnalyticalSolutions ..................... 12 3.3 ModelwiththeInvertedPendulum ................... 14 4 Regularand Chaotic DynamicsNear the Main Parametric Resonance ............................................... 16 4.1 InstabilityRegionandParametersInfluence ........... 16 4.2 Upside-DownPendulum............................ 21 5 ExperimentalSetupoftheSystemwithActiveMRDamper...... 24 5.1 LaboratoryRig.................................... 24 5.2 CharacteristicsoftheMagnetorheologicalDamperand NonlinearSprings ................................. 25 6 DynamicsofanAutoparametricSystemwithMRDamper....... 27 6.1 RegularOscillations ............................... 27 6.2 InfluenceofMRDampingonPendulum’sRotation ..... 33 6.3 ChaoticMotionunderMRDampingInfluence ......... 38 7 InfluenceofaNonlinearSystem’sSuspensionontheInstability Regions ................................................. 52 8 ConclusionsandRemarks .................................. 58 References..................................................... 59 XII Contents On the Dynamics of Pedestrians-Induced Lateral Vibrations of Footbridges .................................................... 63 StefanoLenci,LauraMarcheggiani 1 IntroductionandLiteratureReview .......................... 64 2 AContinuous-TimeModel:TheSAMEOModel............... 68 2.1 ParametricInvestigations:ModelImplementationand ComputationalAspects............................. 71 2.2 NumericalSimulations............................. 77 3 ADiscrete-TimeModel.................................... 97 3.1 SingleDegreeofFreedomOscillator andDiscrete DynamicModel................................... 98 3.2 InteractionOscillator-Pedestrians ....................102 3.3 FixedPoints......................................105 3.4 ACase-Study:TheLondonMillenniumFootbridge.....108 4 Conclusions..............................................109 References.....................................................112 ApplicationsforShape Memory AlloysinStructuralandMachine Dynamics ...................................................... 115 MatthewP.Cartmell,ArkadiuszJ.Z˙ak,OlgaA.Ganilova 1 ReviewoftheLiteratureandIntroduction.....................115 2 ModellingoftheShapeMemoryEffect.......................118 3 DynamicsofCompositeBeamsandPlateswithIntegratedSMA Elements ................................................128 4 ApplicationstoFlexibleRotors..............................139 5 AntagonisticActuationControlofVibrationinPlates ...........145 6 Conclusions..............................................152 References.....................................................154 TheoreticalandExperimentalNonlinearVibrationsofSaggedElastic Cables......................................................... 159 GiuseppeRega 1 Introduction..............................................159 2 CableModellingandTheoreticalAnalysis ....................161 2.1 ContinuousModelling .............................161 2.2 StaticEquilibriumandPlanarLinearFreeDynamics....165 2.3 MultimodeDiscretizationforNonlinearDynamics......167 2.4 InternalResonancesandAsymptoticSolutions.........168 2.5 ModalInteractionCoefficientsasPredictiveToolsfor ReliableNonlinearDynamicResponse................171 3 NonlinearPhenomenainForcedDynamicResponse............176 3.1 MultimodalInteractionandResonantVibrations .......177 3.2 Modulated,Non-regular,andMulti-harmonic Responses........................................184 3.3 NonlinearDynamicDisplacementsandTensions .......187

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.