ebook img

Nonlinear Control of Engineering Systems: A Lyapunov-Based Approach PDF

409 Pages·2003·10.878 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nonlinear Control of Engineering Systems: A Lyapunov-Based Approach

Control Engineering Series Editor William S. Levine Department of Electrical and Computer Engineering University of Maryland College Park, MD 20742-3285 USA Editorial Advisory Board Okko Bosgra William Powers Delft University Ford Motor Company (retired) The Netherlands USA Graham Goodwin Mark Spong University of Newcastle University of Illinois Australia Urbana-Champaign USA Petar Kokotovic University of California lori Hashimoto Santa Barbara Kyoto University USA Kyoto, Japan Manfred Morari ETH ZUrich, Switzerland Warren E. Dixon Arnan Behal Darren M. Dawson Siddharth P. Nagarkatti Nonlinear Control of Engineering Systems A Lyapunov-BasedApproach Springer Science+Business Media, LLC Warren E. Dixon AmanBehal Oak Ridge National Laboratory Clemson University Engineering Science and Department of Electrical and Technology Division Computer Engineering Oak Ridge, TN 37831 Clemson, SC 29634-0915 USA USA Darren M. Dawson Siddharth P. Nagarkatti Clemson University MKS Instruments Department of Electrical and Advanced Technology Group Computer Engineering Methuen, MA 01844 Clemson, SC 29634-0915 USA USA Library of Congress Cataloging-in-Publication Data Nonlinear Control of engineering systems: a Lyapunov-based approach 1 Warren E. Dixon ... let ai.]. p. cm. - (Control engineering) Includes bibliographical references and index. ISBN 978-1-4612-6581-8 ISBN 978-1-4612-0031-4 (eBook) DOI 10.1007/978-1-4612-003 1-4 1. Automatic control. 2. Nonlinear control theory. 3. Lyapunov functions. I. Dixon, Warren E., 1972-II. Control engineering (Birkhliuser) TJ213.N568 2003 629.8'36-dc21 2003045389 CIP Printed on acid-free paper. 102003 Springer Science+Business Media New York Originally published by Birkhliuser Boston in 2003 Softcover reprint of the hardcover 1st edition 2003 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this pUblication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. ISBN 978-1-4612-6581-8 SPIN 10852085 Typeset by the authors. 987 6 5 4 3 2 1 To my beautiful son, Ethan Noel Dixon -Warren To my parents, Swaran and Ashwani K. Behal -Arnan To my faithful wife, Dr. Kim Dawson -Darren To my loving wife, Meghana S. Nagarkatti -Siddharth Contents Preface xiii 1 Introduction 1 1.1 Pitfalls of Linear Control ...... 1 1.1.1 Limitations of Linearization . 2 1.1.2 Dangers of Destabilization. . 6 1.2 Lyapunov-Based Control. . . . . . . 9 1.2.1 Exact Model Knowledge Example 9 1.2.2 Simulation Results 11 1.2.3 Adaptive Example 14 1.2.4 Simulation Results 15 1.3 Summary 18 References . . . . . 18 2 Mechanical Systems 21 2.1 Introduction. . . . 21 2.2 Autobalancing Systems 23 2.2.1 System Model. . 24 2.2.2 Control Objective 27 2.2.3 Adaptive Control . 28 2.2.4 DCAL-Based Adaptive Control 30 2.2.5 Experimental Setup and Results 39 viii Contents 2.3 Dynamically Positioned Ships . . . . . . . . . 47 2.3.1 System Model ............. . 47 2.3.2 Adaptive Full-State Feedback Control 50 2.3.3 Adaptive Output Feedback Control. 53 2.3.4 Simulation Results 60 2.4 Euler-Lagrange Systems 63 2.4.1 System Model. . . 63 2.4.2 Control Objective 68 2.4.3 Quaternion-Based Control. 69 2.4.4 UUV Extension. . . . . . . 73 2.4.5 Simulation Results ..... 77 2.5 Background and Further Reading . 83 References . . . 85 3 Electric Machines 91 3.1 Introduction.. 91 3.2 Induction Motor ... 94 3.2.1 System Model. 95 3.2.2 Control Objective 96 3.2.3 Standard IFOC Control 97 3.2.4 Improved IFOC Control 98 3.2.5 Adaptive Extension .. 103 3.2.6 Experimental Setup and Results 105 3.3 Switched Reluctance Motor 109 3.3.1 System Model. . . . . . . . 110 3.3.2 Control Objective ..... 111 3.3.3 Adaptive Tracking Control 111 3.3.4 Commutation Strategy. . . 118 3.3.5 Experimental Setup and Results 123 3.4 Active Magnetic Bearings . . . 128 3.4.1 System Model. . . . . . 129 3.4.2 AMB Tracking Control 134 3.4.3 Commutation Strategy. 139 3.5 Background and Further Reading. 141 References . . 143 4 Robotic Systems 149 4.1 Introduction........... 149 4.2 Learning Control Applications. 151 4.2.1 General Problem .... 153 4.2.2 Robot Control Problem 156 Contents ix 4.2.3 Experimental Setup and Results 162 4.3 Position and Force Control Applications 165 4.3.1 System Model ........ . 166 4.3.2 Control Objective ..... . 172 4.3.3 Full-State Feedback Control 173 4.3.4 Output Feedback Control . . 178 4.3.5 Experimental Setup and Results 183 4.4 Visual Servo Control Application 187 4.4.1 System Model ......... . 187 4.4.2 Control Objective ...... . 191 4.4.3 Adaptive Control Development 192 4.4.4 Redundant Robot Extension 198 4.4.5 Camera-in-Hand Extension .. 200 4.4.6 Experimental Setup and Results 204 4.5 Background and Further Reading. 213 References . . . . 215 5 Aerospace Systems 223 5.1 Introduction... 223 5.2 Attitude Tracking ... 225 5.2.1 System Model. 226 5.2.2 Control Objective 231 5.2.3 Adaptive Full-State Feedback Control 231 5.2.4 Adaptive Output Feedback Controller 234 5.2.5 Simulation Results ...... . 240 5.3 Energy /Power and Attitude Tracking. 240 5.3.1 System Model ... 243 5.3.2 Control Objective 243 5.3.3 Adaptive IPACS 245 5.3.4 Stability Analysis. 247 5.3.5 Simulation Results 248 5.4 Formation Flying . . . . . 252 5.4.1 System Model ... 253 5.4.2 Control Objective 256 5.4.3 MSFF Control . . 257 5.4.4 Stability Analysis. 257 5.4.5 Simulation Results 259 5.5 Background and Further Reading. 260 References . . . . . . . . . . . . . . 264 x Contents 6 Underactuated Systems 269 6.1 Introduction. . . . . . 269 6.2 Overhead Crane Systems 271 6.2.1 System Model. . . 271 6.2.2 Open-Loop Error System 273 6.2.3 Control Design and Analysis 276 6.2.4 Experimental Setup and Results 283 6.3 VTOL Systems ...... 287 6.3.1 System Model. . . . . . . 288 6.3.2 Control Objective · ... 290 6.3.3 Open-Loop Error System 291 6.3.4 Control Development. . . 292 6.3.5 Closed-Loop Error System. 294 6.3.6 Stability Analysis. . . . . . 295 6.3.7 Simulation Results . . . . . 299 6.3.8 Automotive Steering Extension 302 6.3.9 Surface Vessel Extension. 306 6.4 Satellite Systems ..... 310 6.4.1 System Model. . . . . . . 311 6.4.2 Control Objective · ... 311 6.4.3 Open-Loop Error System 313 6.4.4 Kinematic Control · ... 314 6.4.5 Closed-Loop Error System . 315 6.4.6 Stability Analysis. . . . . . 315 6.4.7 Axisymmetric Satellite Extension . 318 6.4.8 Simulation Results . . . . . 320 6.5 Background and Further Reading . 324 References . ............. 330 Appendices 335 A Mathematical Background 337 References . . . . . . . . . · ........ .......... 344 B Supplementary Lemmas and Definitions 345 B.1 Chapter 2 Lemmas . . . . . . . . . . . . . ...... 345 B.l.1 Convolution Operations for Torque Filtering 345 B.1.2 Control Signal Bound 346 B.1.3 Control Signal Bound 347 B.1.4 Control Signal Bound 349 B.1.5 Inequality Proofs . . . 354 Contents Xl B.1.6 Control Signal Bounds .. . 357 B.1.7 Matrix Property ..... . 358 B.2 Chapter 3 Definitions and Lemmas 359 B.2.1 Supplemental Definitions . 359 B.2.2 Stability Analysis for Projection Cases. 359 B.2.3 Dynamic Terms for a 6-DOF AMB System 361 B.2.4 Partial Derivative Definitions 363 B.3 Chapter 4 Lemmas . . . . . . . . . . . . . . . . 364 B.3.1 Inequality Lemma . . . . . . . . . . . . 364 B.3.2 Stability Analysis for Projection Cases. 366 B.3.3 Boundedness Lemma ......... . 367 B.3.4 State-Dependent Disturbance Bound . 369 B.3.5 Matrix Property .... . 372 BA Chapter 5 Lemmas ....... . 373 BA.1 Skew-Symmetry Property 373 BA.2 Control Signal Bound .. 374 B.5 Chapter 6 Definitions and Lemmas 375 B.5.1 Definitions for Dynamic Terms 375 B.5.2 Linear Control Law Analysis . 376 B.5.3 Coupling Control Law Analysis 387 B.5.4 Matrix Property 389 References . 389 Index 391

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.