ebook img

Nonlinear analysis and differential equations: and introduction PDF

158 Pages·1998·0.731 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nonlinear analysis and differential equations: and introduction

Nonlinear Analysis and Differential Equations An Introduction Klaus Schmitt Department of Mathematics University of Utah Russell C. Thompson Department of Mathematics and Statistics Utah State University November 11, 2004 ii ··· Copyright c1998 by K. Schmitt and R. Thompson (cid:13) iii Preface The subject of Differential Equations is a well established part of mathe- matics and its systematic development goes back to the early days of the de- velopment of Calculus. Many recent advances in mathematics, paralleled by a renewed and flourishing interaction between mathematics, the sciences, and engineering, have again shown that many phenomena in the applied sciences, modelled by differential equations will yield some mathematical explanation of these phenomena (at least in some approximate sense). Theintentofthissetofnotesistopresentseveraloftheimportantexistence theorems for solutions of various types of problems associated with differential equationsandprovidequalitativeandquantitativedescriptionsofsolutions. At the same time, we develop methods of analysis which may be applied to carry outthe aboveandwhichhaveapplicationsinmanyotherareasofmathematics, as well. Asmethodsandtheoriesaredeveloped,weshallalsopayparticularattention to illustrate how these findings may be used and shall throughout consider examples from areas where the theory may be applied. As differential equations are equations which involve functions and their derivatives as unknowns, we shall adopt throughout the view that differen- tial equations are equations in spaces of functions. We therefore shall, as we progress, develop existence theories for equations defined in various types of function spaces, which usually will be function spaces which are in some sense natural for the given problem. iv Table of Contents I Nonlinear Analysis 1 Chapter I. Analysis In Banach Spaces 3 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Banach Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 Differentiability, Taylor’s Theorem . . . . . . . . . . . . . . . . . 8 4 Some Special Mappings . . . . . . . . . . . . . . . . . . . . . . . 11 5 Inverse Function Theorems . . . . . . . . . . . . . . . . . . . . . 20 6 The Dugundji Extension Theorem . . . . . . . . . . . . . . . . . 22 7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Chapter II. The Method of Lyapunov-Schmidt 27 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 Splitting Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 Bifurcation at a Simple Eigenvalue . . . . . . . . . . . . . . . . . 30 Chapter III. Degree Theory 33 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 Properties of the Brouwer Degree . . . . . . . . . . . . . . . . . . 38 4 Completely Continuous Perturbations . . . . . . . . . . . . . . . 42 5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Chapter IV. Global Solution Theorems 49 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2 Continuation Principle . . . . . . . . . . . . . . . . . . . . . . . . 49 3 A Globalization of the Implicit Function Theorem . . . . . . . . 52 4 The Theorem of Krein-Rutman . . . . . . . . . . . . . . . . . . . 54 5 Global Bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 II Ordinary Differential Equations 63 Chapter V. Existence and Uniqueness Theorems 65 v vi TABLE OF CONTENTS 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2 The Picard-Lindel¨of Theorem . . . . . . . . . . . . . . . . . . . . 66 3 The Cauchy-PeanoTheorem. . . . . . . . . . . . . . . . . . . . . 67 4 Extension Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 69 5 Dependence upon Initial Conditions . . . . . . . . . . . . . . . . 72 6 Differential Inequalities . . . . . . . . . . . . . . . . . . . . . . . 74 7 Uniqueness Theorems . . . . . . . . . . . . . . . . . . . . . . . . 78 8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Chapter VI. Linear Ordinary Differential Equations 81 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3 Constant Coefficient Systems . . . . . . . . . . . . . . . . . . . . 83 4 Floquet Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Chapter VII. Periodic Solutions 91 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3 Perturbations of NonresonantEquations . . . . . . . . . . . . . . 92 4 Resonant Equations . . . . . . . . . . . . . . . . . . . . . . . . . 94 5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Chapter VIII. Stability Theory 103 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 2 Stability Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3 Stability of Linear Equations . . . . . . . . . . . . . . . . . . . . 105 4 Stability of Nonlinear Equations . . . . . . . . . . . . . . . . . . 108 5 Lyapunov Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Chapter IX. Invariant Sets 123 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 2 Orbits and Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 3 Invariant Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4 Limit Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5 Two Dimensional Systems . . . . . . . . . . . . . . . . . . . . . . 129 6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Chapter X. Hopf Bifurcation 133 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 2 A Hopf Bifurcation Theorem . . . . . . . . . . . . . . . . . . . . 133 TABLE OF CONTENTS vii Chapter XI. Sturm-Liouville Boundary Value Problems 139 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 2 Linear Boundary Value Problems . . . . . . . . . . . . . . . . . . 139 3 Completeness of Eigenfunctions . . . . . . . . . . . . . . . . . . . 142 4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Bibliography 147 Index 149 viii TABLE OF CONTENTS Part I Nonlinear Analysis 1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.