Nonequilibrium Thermodynamic Formalism 6 of Nonlinear Chemical Reaction Systems with 1 0 Waage-Guldberg’s Law of Mass Action 2 r p A Hao Ge ∗ 6 2 Beijing International Center for Mathematical Research (BICMR) and Biodynamic Optical Imaging Center (BIOPIC) ] h Peking University, Beijing 100871, P.R.C. p - m and e h c Hong Qian . † s c Department of Applied Mathematics i s y University of Washington, Seattle h p WA 98195-3925, U.S.A [ 2 v April 27, 2016 8 5 1 3 0 Abstract . 1 0 Macroscopic entropy production σ(tot) in the general nonlinear isother- 6 malchemical reaction system withmassactionkinetics isdecomposed into 1 : afreeenergy dissipation andahouse-keeping heat: σ(tot) = σ(fd) +σ(hk); v σ(fd) = dA/dt,whereAisageneralizedfreeenergyfunction. Thisyields i X a novel n−onequilibrium free energy balance equation dA/dt = σ(tot) + r σ(hk),whichisonaparwithcelebrated entropy balance equation−dS/dt = a σ(tot) +η(ex) where η(ex) is the rate of entropy exchange with the environ- ment. For kinetic systems with complex balance, σ(fd) and σ(hk) are the macroscopic limits of stochastic free energy dissipation and house-keeping heat, which are both nonnegative, in the Delbru¨ck-Gillespie description of ∗[email protected] †[email protected] 1 the stochastic chemical kinetics. Therefore, weshow that a full kinetic and thermodynamic theory of chemical reaction systems that transcends meso- scopicandmacroscopic levelsemerges. 1 Introduction Inspired by the recent discovery of three non-negative entropy productions inmesoscopic, stochastic nonequilibrium thermodynamics, e = f +Q , p d hk interpreted as an equation of free energy balance: dF(meso)/dt f = d ≡ − Q e , where e , Q , F(meso), and f are called entropy production, hk p p hk d − house-keeping heat, mesoscopic free energy and free energy dissipation [1, 2,3,4,5,6],weconsider theformalkinetics ofageneralchemical reaction system ν X +ν X + ν X FGGkGG+GGBGℓG κ X +κ X + κ X , (1) ℓ1 1 ℓ2 2 ℓN N ℓ1 1 ℓ2 2 ℓN N ··· k−ℓ ··· in which 1 ℓ M: There are N species and M reactions. (κ ν ) ij ij ≤ ≤ − are stoichiometric coefficients that relate species to reactions. According to Waage-Guldberg’sLawofMassActionforamacroscopicreactionvessel,at aconstant temperature, withrapidly stirred chemical solutions, the concen- trations ofthespecies attimet,x (t)forX ,satisfy the system ofordinary i i differential equations [7] M dx (t) i = κℓi νℓi J+ℓ(x) J−ℓ(x) , (2) dt − − Xℓ=1(cid:16) (cid:17)(cid:16) (cid:17) withx= (x ,x , ,x )and 1 2 N ··· N N J+ℓ(x) = k+ℓ xνiℓi, J−ℓ(x) = k−ℓ xκiℓi. (3) i=1 i=1 Y Y For a meaningful thermodynamic analysis, we shall assume in the present paperthatk+ℓ = 0ifandonlyifk−ℓ = 0. The kinetics of such a chemical reaction system can be very complex. Thesimpleandwell-understood casesarelinear,unimolecularreactionsys- tems, or nonlinear systems whose steady states are detail balanced [8]. For the latter, it can be shown that the steady state is unique and the net flux in each and every reversible reaction is zero [9, 10]. Therefore, it is an equi- librium steady state. Furthermore, the existence of a chemical equilibrium withdetailedbalancedictatesthattherateconstants k±ℓ insuchasystem { } satisfytheWegscheider-Lewis cyclecondition [11,12,13]. J.W.Gibbswasthefirsttoformulateafreeenergyfunction andshowed that Waage-Guldberg’s mass action law was closely related to a variational 2 principle withrespect tothatfunction, connecting thermodynamics withki- netics [11]. In units of k T and per unit volume, the Gibbs function for a B dilutesolution [14]: N G x = x µ 1 , µ = µo+lnx , (4) j j j j j − (cid:2) (cid:3) Xj=1 (cid:16) (cid:17) in which µo is a constant associated with the structure of the jth chemical j species in aqueous solution, and the 1 term is the contribution from the − solvent. SeeAppendix Aformorediscussions. If all the reaction rate constants k±ℓ satisfy Wegscheider-Lewis cycle condition, thechemicalpotential difference [15]: N ∆µ xeq κ ν µo+lnxeq = 0, (5) ℓ ≡ ℓj − ℓj j j (cid:2) (cid:3) Xj=1(cid:0) (cid:1)(cid:16) (cid:17) in which xeq is the equilibrium concentration. Then for the reaction sys- { j } tem,withaconstantvolume, thatisawayfromitsequilibrium attimet, N d dx (t) G x(t) = j µo+lnx (6) dt dt j j (cid:2) (cid:3) Xj=1 (cid:16) (cid:17) N M = κℓj νℓj J+ℓ(x) J−ℓ(x) µoj +lnxj − − Xj=1Xℓ=1(cid:0) (cid:1)(cid:16) (cid:17)(cid:16) (cid:17) M J−ℓ(x) = J+ℓ(x) J−ℓ(x) ln 0. (7) − J (x) ≤ Xℓ=1(cid:16) (cid:17) (cid:18) +ℓ (cid:19) For open chemical systems that do not reach an equilibrium with de- tailedbalance,HornandJacksonintroducedthenotionofcomplexbalanced reaction network in 1972 [16]. It is a generalization of both linear reaction networks and kinetics with detailed balance [17, 18]. Complex balanced kinetics can be nonlinear as well as having nonequilibrium steady states (NESS).Italsohas adeep relation tothetopological structure ofareaction network[19,20]. Acomplexbalancedreactionsystemhasauniquepositive steadystate. For nonequilibrium chemical thermodynamics, how, or whether even possible,togeneralizeGibbs’approach,intheframeworkofthemass-action kinetics,tononlinearkineticsystemswithoutdetailedbalancehasremained elusive. Such systems include the important class of NESS which is aptly applicable to cellular biochemistry in homeostasis [15]. L. Onsager’s phe- nomenologicaltheoryisonlyapplicabletosystemsinthelinearregimenear an equilibrium [21]; T. L. Hill’s NESSthermodynamics [22] and the grand 3 canonical approach developed in [23] are applicable only to macroscopic linearchemicalkinetics. Butthankstotherecentdevelopmentinbothmeso- scopic, stochastic nonequilibrium thermodynamics and the resurgent inter- estsinthestochasticdescription ofnonlinearmass-actionkineticsystems,a cross-fertilization ispossible. In this paper, we revisit the notion of macroscopic, chemical reaction entropy production σ(tot)[x] [15, 24, 25], and show it can also be decom- posedintotwopartsσ(tot)[x] =σ(fd)[x]+σ(hk)[x],inwhichσ(fd)[x]isthe negative time derivative of a generalized free energy function A[x]. More interestingly, both σ(fd)[x] and σ(hk)[x] can be mathematically proven as non-negativity for kinetic systems with complex balance. Since the A[x] is defined with respect to a positive steady state of the kinetic system, it is no longer unique for systems with multi-stability. In fact, for a system with multi-stability, one can define A[x] with respect to one of the sta- ble steady states, then it necessarily has negative σ(fd)[x] for some x, thus σ(hk) > σ(tot) at the x. Wefurther show that for complex balanced kinetic systems these natually defined macroscopic quantities are the macroscopic limits of the mesoscopic free energy dissipation f and house-keeping heat d Q , according to the stochastic kinetic description of the same chemical hk kinetics. 2 Nonequilibriumthermodynamicsof chem- ical reaction network Inthepresentpaper,wedonotassumetherateconstantsk±ℓsatisfyWegscheider- Lewis cycle condition unless stated otherwise. We do assume, however, that the macroscopic kinetic system (2) has a positive steady state xss = xss,1 i N . Motivatedbytherecentstudies onmesoscopic, stochas- { i ≤ ≤ } tic thermodynamics [1, 3, 26], we introduce a decomposition of the instan- taneous rate of total entropy production of the mass-action kinetic system following Eq. 2, σ(tot)[x] [27, 24, 25], into two nonequilibrium compo- nents, a house-keeping heat part [28, 29, 30] and a free energy dissipation part: M J (x) σ(tot) x = J+ℓ(x) J−ℓ(x) ln +ℓ = σ(hk)+σ(f(d8),a) (cid:2) (cid:3) Xℓ=1(cid:16) − (cid:17) (cid:18)J−ℓ(x)(cid:19) M J xss σ(hk)(cid:2)x(cid:3) = Xℓ=1(cid:16)J+ℓ(x)−J−ℓ(x)(cid:17)ln J+−ℓℓ(cid:0)xss(cid:1)!, (8b) σ(fd)(cid:2)x(cid:3) = XℓM=1(cid:16)J+ℓ(x)−J−ℓ(x)(cid:17)ln(cid:18)JJ+−ℓℓ(((cid:0)xx))JJ(cid:1)−+ℓℓ((xxssss))(cid:19). (8c) 4 Both σ(tot) x and σ(hk) x have the generic form of “net flux in reac- tion ℓ” “thermodynamic force per ℓth reaction”. Thelatter are expressed × (cid:2) (cid:3) (cid:2) (cid:3) in terms of the ratio of forward and backward one-way fluxes. This is an insight thatgoesbackatleasttoT.L.Hill[22]ifnotearlier, asdiscussed in [27]. For the term in (8b), we adopt the idea of Hatano and Sasa who first introduced housekeeping heat as the product of transient thermodynamic fluxesandsteady-statethermodynamicforce[29]. Sincethen,therearesev- eral different definitions under the same name [31, 32]. We also note that the one-way fluxes in chemical kinetics are nonlinear functions of concen- trations ingeneral, whileone-way-fluxes inmesocopic stochastic dynamics are always linear functions of state probabilities, similar to a unimolecular reactionnetwork. Thermodynamicforcesofawiderangeofprocesses have aunifying expression intermsofone-way-fluxes [27]. We also note that all three quantities in (8) can be explicitly computed if the rate lawsJ±ℓ(x) aswell as a kinetic steady state xss are known. Be- fore introducing a further assumption of complex balanced kinetics in Sec. 2.2, we first discuss key characteristics of the three macroscopic quantities introduced inEq. 8. 2.1 Keycharacteristicsofthethreemacroscopicquan- tities First, theforemost, σ(tot)[x] 0. Itiszeroifandonlyifatanx,J (x) = +ℓ ≥ J−ℓ(x) ℓ. Thisimpliesthexisasteadystateof(2),anditactuallysatisfies ∀ the detailed balance. Inthis case, one introduces ascalar function based on thesteadystatexss: N x (t) A[x] = x (t)ln j x (t)+xss . (9) j xss − j j j=1" j ! # X Usingthisfunction, itcanbeshown(seebelow)thatifakinetic system has suchanequilibriumsteadystate,itisunique. Theequilibriumxssin(9)can then be expressed in terms of intrinsic properties of the chemical species, e.g., the µ’s. In the chemical kinetics literature, the A[x] first appeared as Shear’s Liapunov function for kinetics with detailed balance [9, 33]. Horn and Jackson called it pseudo-Helmholtz function for complex balanced but notdetailbalanced systems[16]. Second, if a steady state xss is detail balanced, then σ(hk) x 0 x. ≡ ∀ Otherwise, σ(hk) xss > 0 for any steady state, stable or unstable. Then (cid:2) (cid:3) there must be a concentration region, near xss, in which σ(hk) x > 0. (cid:2) (cid:3) Therefore, σ(hk)[x] can only be negative, if ever, when x is far from any (cid:2) (cid:3) steadystate. 5 Third,σ(fd) x isthetimederivativeofA[x(t)]givenin(9),whenx(t) followstherateequation (2): (cid:2) (cid:3) N dA[x] dx (t) x (t) j j = ln dt dt xss j=1 j ! X N M N N x = κℓj −νℓj k+ℓ xνiℓi −k−ℓ xκiℓi ln xsjs Xj=1"Xℓ=1(cid:16) (cid:17) Yi=1 Yi=1 !# j ! M N N N κℓj−νℓj x = k+ℓ xνiℓi −k−ℓ xκiℓi ln xsjs ℓ=1 i=1 i=1 !j=1 j ! X Y Y X = XℓM=1(cid:16)J+ℓ −J−ℓ(cid:17)ln(cid:18)J+JℓJ−−ℓJℓ(+sxsℓss)(cid:19) = −σ(fd)[x]. (10) Inotherwords, N ∂A[x] σ(fd)[x] = F (x), (11) i − ∂x i i=1(cid:18) (cid:19) X in which ddxti = Fi(x) = Mℓ=1 κℓi − νℓi J+ℓ(x) − J−ℓ(x) , i.e. the right hand side of (2). Noticing t(cid:16)hat A[x] a(cid:17)tt(cid:16)ains its global mini(cid:17)mum 0 at P xss, Eq. 11 dictates xσ(fd)[xss] = 0. Todetermine whether σ(fd)[xss]is ∇ amaximum,minimum,orsaddlepoint,wecomputetheHessianmatrix : H ∂2σ(fd)[xss] xss ij H ≡ ∂x ∂x i j (cid:2) (cid:3) N ∂2A[xss] ∂F (xss) ∂2A[xss] ∂F (xss) k k = + − ∂x ∂x ∂x ∂x ∂x ∂x k=1(cid:20)(cid:18) k i (cid:19) j (cid:18) k j (cid:19) i (cid:21) X 1 ∂F (xss) 1 ∂F (xss) i j = . (12) −xss ∂x − xss ∂x i j j i Note matrix Γ, γ = ∂Fi(xss), defines the linear stability of xss. If we ij ∂xj denoteΘ = diag (xss)−1 ,then { i } = ΘΓ+ΓTΘ . (13) H − (cid:0) (cid:1) There is a precise relationship between the Jacobian matrix and Hessian matrixnearanxss. In one-dimensional case, and Γ always have opposite signs, since a H steady state is positive. In high-dimensional case, however, even if all the eigenvalues ofΓarenegative,whichimpliesthesteadystatexss isstable,it 6 isstillpossible forasymmetric tohavenegativeeigenvalues, resulting in H negativeσ(fd)[x]nearastablefixedpoint. Asimpleexampleofsuchis 1 2 5 0 10 7 Γ = , Θ = , = − − , 3 4 0 1 H 7 8 (cid:18) − − (cid:19) (cid:18) (cid:19) (cid:18) − (cid:19) in which matrix Γ has eigenvalues 1and 2, but has a negative eigen- − − H value 1 √130. − − Concentrationsofspecieswithlinearconstraints. Inchemicalkinetics, theconcentrations ofmanydifferent chemical species areoftenconstrained bythestoichiometric matrix. Infact, matrix ,withelements s = (κ jℓ ℓj S − ν ),oftenhasahigh-dimensional leftnullspacewithvector(q , ,q ): ℓj 1 N ··· N N q s = (κ ν )q =0, ℓ. (14) j jℓ ℓj ℓj j − ∀ j=1 j=1 X X Eachlinearly independent null vector represents aconservation ofacertain chemicalgroupintheentirechemicalreactionsystem: N N d dx (t) j q x (t)= q = 0. (15) j j j dt dt j=1 j=1 (cid:18) (cid:19) X X If the left null space of is d dimensional, then there are only (N d) S − independent differential equations inthesystem (2). TheJacobian matrixΓ near a fixed point xss has a rank equal or lower than (N d). As shown − in Appendix B, there exists an N (N d) constant matrix with rank × − Z (N d), the spanned space of whose column vectors are the same as the − spanned spaceofthecolumnvectorsof . S In terms of the and an (N d) N constant matrix , such that UZ = IN−d. Eq. 2Zbecomes ddt~δ(t−) = F~×~δ ,inwhichZ~δ(t) =Ux(t)−xss and ~ ~δ = F~ xss+ ~δ . F~(x) = F (x) istherighthandsideofEq. F U Z { (cid:0)i (cid:1) } (2). (cid:0) (cid:1) (cid:0) (cid:1) Therefore, Γδ = Γ is the linear matrix of the equation d~δ(t) = U Z dt ~ ~δ at ~δ = 0, which determines the stability of the original steady state F xssconstrainedbytheconservationrelations. AndtheHessianmatrix δ of σf(cid:0)d w(cid:1)ithrespecttothevariable~δwithoutconstrainbecomes δ = TH . H Z HZ Furthermore, since = , is an identity mapping from the ZUZ Z ZU space spanned by the column vectors in to itself. Hence we have = Z S andF~ = J~= J~,followedby Γ = Γ. Then ZUS S ZUS ZU δ = T = T Θ Γ+ΓT T TΘ H Z HZ −Z ZU U Z Z = TΘ Γδ (cid:16)Γδ T TΘ , (cid:17) (16) − Z Z − Z Z inwhich(N d) (N(cid:0) d)m(cid:1)etrix,(cid:0)and(cid:1)sy(cid:0)mmetrix(cid:1)matrix TΘ isno − × − Z Z longerdiagonal (compared withEq. 13). (cid:0) (cid:1) 7 2.2 Complex balanced kinetics and non-negativity of σ(hk) and σ(fd) Macroscopic house-keeping heat. In stochastic thermodynamics, house- keeping heat [29, 3] is also known as adiabatic instantaneous entropy pro- ductionrate[1,4]. Ifthemacroscopicreactionsystem(1)isinasteady-state xss,theℓthreversiblereactionhasachemicalfreeenergydissipationperoc- currence ∆µsℓs = kBT ln J+ℓ(xss)/J−ℓ(xss) [6]. Therefore, inkBT unit andsumoverallM reversiblereactions wehave (cid:0) (cid:1) M ∆µss σ(hk) x = (J+ℓ(x) J−ℓ(x)) ℓ − k T B ℓ=1 (cid:2) (cid:3) X M J+ℓ(xss) J−ℓ(xss) = ℓ=1(cid:20)J+ℓ(x)ln(cid:18)J−ℓ(xss)(cid:19)+J−ℓ(x)ln(cid:18)J+ℓ(xss)(cid:19)(cid:21) X M J−ℓ(xss) J+ℓ(xss) ≥ ℓ=1(cid:20)J+ℓ(x)(cid:18)1− J+ℓ(xss)(cid:19)+J−ℓ(x)(cid:18)1− J−ℓ(xss)(cid:19)(cid:21) X M = J+ℓ xss −J−ℓ xss JJ++ℓℓ(xxss) − JJ−−ℓℓ(xxss) !. Xℓ=1(cid:16) (cid:0) (cid:1) (cid:0) (cid:1)(cid:17) (17) (cid:0) (cid:1) (cid:0) (cid:1) Foranequilibriumsteadystate,detailedbalanceimpliesJ+ℓ(xeq) J−ℓ(xeq)= − 0forallℓ. Thereforetherhsof(17)iszerofordetailed balanced system. Generalized free energy dissipation. Free energy dissipation [1, 3] is alsoknownasnon-adiabaticinstantaneousentropyproductionrate[4],which isactuallythenegativetime-derivative ofageneralized freeenergy givenin (9). ThisA[x]figuredprominentlyinHornandJackson’stheory[16]. With- outtheassumption ofdetailed balance, σ(fd)[x] = −XℓM=1(cid:16)J+ℓ(x)−J−ℓ(x)(cid:17)ln(cid:18)JJ+−ℓℓ((xx))JJ−+ℓℓ((xxssss))(cid:19) M J−ℓ(x)J+ℓ(xss) J+ℓ(x)J−ℓ(xss) = −ℓ=1(cid:20)J+ℓ(x)ln(cid:18)J+ℓ(x)J−ℓ(xss)(cid:19)+J−ℓ(x)ln(cid:18)J−ℓ(x)J+ℓ(xss)(cid:19)(cid:21) X M J−ℓ(t)J+ℓ(xss) J+ℓ(t)J−ℓ(xss) ≥ −ℓ=1(cid:20)J+ℓ(cid:18)J+ℓ(t)J−ℓ(xss) −1(cid:19)+J−ℓ(cid:18)J−ℓ(t)J+ℓ(xss) −1(cid:19)(cid:21) X M = J+ℓ xss −J−ℓ xss JJ++ℓℓ(xxss) − JJ−−ℓℓx(xss) !. (18) Xℓ=1(cid:16) (cid:0) (cid:1) (cid:0) (cid:1)(cid:17) (cid:0) (cid:1) (cid:0) (cid:1) This is exactly the same rhs of (17). Therefore, σ(hk) and σ(fd) are both 8 no-less than M J+ℓ xss −J−ℓ xss JJ++ℓℓ(xxss) − JJ−−ℓℓx(xss) ! Xℓ=1(cid:16) (cid:0) (cid:1) (cid:0) (cid:1)(cid:17) M N (cid:0) x (cid:1) νℓi (cid:0)N (cid:1)x κℓi = J+ℓ xss −J−ℓ xss xsis − xsis (1.9) Xℓ=1(cid:16) (cid:0) (cid:1) (cid:0) (cid:1)(cid:17) Yi=1(cid:18) i (cid:19) Yi=1(cid:18) i (cid:19) ! Complex balanced chemical reaction networks. A chemical reaction system is “complex balanced” if and only if the rhs of (19) is zero for any x = (x ,x , ,x ) [16, 17, 18]. This is because any unique multi-type- 1 2 N ··· nomialterm N x ξi i xss i=1(cid:18) i (cid:19) Y representsaparticular“complex”(ξ X +ξ X + +ξ X ). Therefore, 1 1 2 2 N N ··· a complex balanced steady state has all the influx to the complex precisely balanced bytheoutfluxofthatcomplex: M N x ξi (Xℓ=1(cid:16)δκℓ,ξ −δνℓ,ξ(cid:17)(cid:16)J+ℓ(cid:0)xss(cid:1)−J−ℓ(cid:0)xss(cid:1)(cid:17))Yi=1(cid:18)xsiis(cid:19) = 0. (20) Detailed balance is a special case in which the Jss = Jss for every ℓ. De- +ℓ −ℓ tailed balance is a kinetic concept. Complex balance, however, has a topo- logicalimplication forareaction network[18,19]. Lyapunov function of complex balanced kinetics. Since dA x = dt { } σ(fd)[x] 0forareactionnetworkwithcomplexbalance,andA x − ≤ (cid:2){ }(cid:3) ≥ 0, it is a Lyapunov function for the mass-action kinetics. The convexity of A[ x ] is easy to establish: ∂2A/∂x ∂x = x−1δ . Therefore, o(cid:2)ne c(cid:3)on- { } i j i ij cludes that the steady state xss of a complex balanced reaction kinetics is unique. Thisisawell-knownresultandtheproofwasgivenin[16]. Theex- istence of this Lyapunov function A[ x ] for kinetic systems with complex { } balance haspromptedHornandJackson’s description ofa“quasithermody- namics”. Infact,anequally significantresultisthefollowingstatement: For reaction system with non-complex balanced kinetics, if the macroscopicfreeenergydissipationσ(fd)[x]isnon-negative for all x, then the kinetics has a unique steady state. Equivalently, if a kinetic system is multi-stable, then σ(fd)[x] is negative for somex,whereσ(hk)[x] > σ(tot)[x]. 9 3 Macroscopic limit of mesoscopic stochas- tic thermodynamics 3.1 KineticdescriptionaccordingtoDelbru¨ckandGille- spie’s model Themacroscopicchemicalthermodynamicspresentedabovedoesnotrefer- ence to anything with probability. But the very notion of Gibbs’ chemical potentialhasadeeprootinit. Chemicalreactionsattheindividualmolecule level are stochastic [34]. A mathematically more accurate description of the chemical kinetics in system (1) is the stochastic theory of Chemical Master Equation (CME) first appeared in the work of Leontovich [35] and Delbru¨ck [36], whose fluctuating trajectories can be exactly computed us- ing the stochastic simulation method widely known as Gillespie algorithm [37]. Notethese two descriptions are not twodifferent theories, rather they are the two aspects of a same Markov process, just as the diffusion equa- tion and the Langevin-equation descriptions of a same Brownian motion. More importantly, this probabilistic description and Waage-Guldberg’s law of mass action are also two parts of a same dynamic theory: The latter is the limit of the former if fluctuations are sufficiently small, when the vol- ume of the reaction system, V, is large [38]. In fact, the key quantity in Delbru¨ck-Gillespie’s descriptionofmesoscopicchemicalkineticsistherate of aparticular reaction, called propensity function. Forthe ℓth forward and backwardreactions, theyare n n ! j u (n) = k V , (21a) ℓ +ℓ (nj νℓj)!Vνℓj j=1(cid:18) − (cid:19) Y n n ! j wℓ(n) = k−ℓV (nj νℓj)!Vκℓj . (21b) j=1(cid:18) − (cid:19) Y Oneseesthatinthemacroscopic limitV ,V−1u (Vx) = J (x)and ℓ +ℓ V−1wℓ(Vx) = J−ℓ(x),wherex= n/V.→ ∞ Thestochastic trajectory canbeexpressed intermsoftherandom-time- changed Poissonrepresentation: n (t) = n (0)+ (22) j j M t t κℓj νℓj Y+ℓ uℓ n(s) ds Y−ℓ wℓ n(s) ds , − − Xℓ=1(cid:16) (cid:17)(cid:26) (cid:18)Z0 (cid:16) (cid:17) (cid:19) (cid:18)Z0 (cid:16) (cid:17) (cid:19)(cid:27) whereY±ℓ(t)are2ℓindependent, standardPoissonprocesses: tn Pr Y(t) = n = e−t, Y(0) = 0. (23) n! (cid:8) (cid:9) 10