ebook img

Nonequilibrium Thermodynamic Formalism of Nonlinear Chemical Reaction Systems with Waage-Guldberg's Law of Mass Action PDF

0.2 MB·
by  Hao Ge
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nonequilibrium Thermodynamic Formalism of Nonlinear Chemical Reaction Systems with Waage-Guldberg's Law of Mass Action

Nonequilibrium Thermodynamic Formalism 6 of Nonlinear Chemical Reaction Systems with 1 0 Waage-Guldberg’s Law of Mass Action 2 r p A Hao Ge ∗ 6 2 Beijing International Center for Mathematical Research (BICMR) and Biodynamic Optical Imaging Center (BIOPIC) ] h Peking University, Beijing 100871, P.R.C. p - m and e h c Hong Qian . † s c Department of Applied Mathematics i s y University of Washington, Seattle h p WA 98195-3925, U.S.A [ 2 v April 27, 2016 8 5 1 3 0 Abstract . 1 0 Macroscopic entropy production σ(tot) in the general nonlinear isother- 6 malchemical reaction system withmassactionkinetics isdecomposed into 1 : afreeenergy dissipation andahouse-keeping heat: σ(tot) = σ(fd) +σ(hk); v σ(fd) = dA/dt,whereAisageneralizedfreeenergyfunction. Thisyields i X a novel n−onequilibrium free energy balance equation dA/dt = σ(tot) + r σ(hk),whichisonaparwithcelebrated entropy balance equation−dS/dt = a σ(tot) +η(ex) where η(ex) is the rate of entropy exchange with the environ- ment. For kinetic systems with complex balance, σ(fd) and σ(hk) are the macroscopic limits of stochastic free energy dissipation and house-keeping heat, which are both nonnegative, in the Delbru¨ck-Gillespie description of ∗[email protected][email protected] 1 the stochastic chemical kinetics. Therefore, weshow that a full kinetic and thermodynamic theory of chemical reaction systems that transcends meso- scopicandmacroscopic levelsemerges. 1 Introduction Inspired by the recent discovery of three non-negative entropy productions inmesoscopic, stochastic nonequilibrium thermodynamics, e = f +Q , p d hk interpreted as an equation of free energy balance: dF(meso)/dt f = d ≡ − Q e , where e , Q , F(meso), and f are called entropy production, hk p p hk d − house-keeping heat, mesoscopic free energy and free energy dissipation [1, 2,3,4,5,6],weconsider theformalkinetics ofageneralchemical reaction system ν X +ν X + ν X FGGkGG+GGBGℓG κ X +κ X + κ X , (1) ℓ1 1 ℓ2 2 ℓN N ℓ1 1 ℓ2 2 ℓN N ··· k−ℓ ··· in which 1 ℓ M: There are N species and M reactions. (κ ν ) ij ij ≤ ≤ − are stoichiometric coefficients that relate species to reactions. According to Waage-Guldberg’sLawofMassActionforamacroscopicreactionvessel,at aconstant temperature, withrapidly stirred chemical solutions, the concen- trations ofthespecies attimet,x (t)forX ,satisfy the system ofordinary i i differential equations [7] M dx (t) i = κℓi νℓi J+ℓ(x) J−ℓ(x) , (2) dt − − Xℓ=1(cid:16) (cid:17)(cid:16) (cid:17) withx= (x ,x , ,x )and 1 2 N ··· N N J+ℓ(x) = k+ℓ xνiℓi, J−ℓ(x) = k−ℓ xκiℓi. (3) i=1 i=1 Y Y For a meaningful thermodynamic analysis, we shall assume in the present paperthatk+ℓ = 0ifandonlyifk−ℓ = 0. The kinetics of such a chemical reaction system can be very complex. Thesimpleandwell-understood casesarelinear,unimolecularreactionsys- tems, or nonlinear systems whose steady states are detail balanced [8]. For the latter, it can be shown that the steady state is unique and the net flux in each and every reversible reaction is zero [9, 10]. Therefore, it is an equi- librium steady state. Furthermore, the existence of a chemical equilibrium withdetailedbalancedictatesthattherateconstants k±ℓ insuchasystem { } satisfytheWegscheider-Lewis cyclecondition [11,12,13]. J.W.Gibbswasthefirsttoformulateafreeenergyfunction andshowed that Waage-Guldberg’s mass action law was closely related to a variational 2 principle withrespect tothatfunction, connecting thermodynamics withki- netics [11]. In units of k T and per unit volume, the Gibbs function for a B dilutesolution [14]: N G x = x µ 1 , µ = µo+lnx , (4) j j j j j − (cid:2) (cid:3) Xj=1 (cid:16) (cid:17) in which µo is a constant associated with the structure of the jth chemical j species in aqueous solution, and the 1 term is the contribution from the − solvent. SeeAppendix Aformorediscussions. If all the reaction rate constants k±ℓ satisfy Wegscheider-Lewis cycle condition, thechemicalpotential difference [15]: N ∆µ xeq κ ν µo+lnxeq = 0, (5) ℓ ≡ ℓj − ℓj j j (cid:2) (cid:3) Xj=1(cid:0) (cid:1)(cid:16) (cid:17) in which xeq is the equilibrium concentration. Then for the reaction sys- { j } tem,withaconstantvolume, thatisawayfromitsequilibrium attimet, N d dx (t) G x(t) = j µo+lnx (6) dt dt j j (cid:2) (cid:3) Xj=1 (cid:16) (cid:17) N M = κℓj νℓj J+ℓ(x) J−ℓ(x) µoj +lnxj − − Xj=1Xℓ=1(cid:0) (cid:1)(cid:16) (cid:17)(cid:16) (cid:17) M J−ℓ(x) = J+ℓ(x) J−ℓ(x) ln 0. (7) − J (x) ≤ Xℓ=1(cid:16) (cid:17) (cid:18) +ℓ (cid:19) For open chemical systems that do not reach an equilibrium with de- tailedbalance,HornandJacksonintroducedthenotionofcomplexbalanced reaction network in 1972 [16]. It is a generalization of both linear reaction networks and kinetics with detailed balance [17, 18]. Complex balanced kinetics can be nonlinear as well as having nonequilibrium steady states (NESS).Italsohas adeep relation tothetopological structure ofareaction network[19,20]. Acomplexbalancedreactionsystemhasauniquepositive steadystate. For nonequilibrium chemical thermodynamics, how, or whether even possible,togeneralizeGibbs’approach,intheframeworkofthemass-action kinetics,tononlinearkineticsystemswithoutdetailedbalancehasremained elusive. Such systems include the important class of NESS which is aptly applicable to cellular biochemistry in homeostasis [15]. L. Onsager’s phe- nomenologicaltheoryisonlyapplicabletosystemsinthelinearregimenear an equilibrium [21]; T. L. Hill’s NESSthermodynamics [22] and the grand 3 canonical approach developed in [23] are applicable only to macroscopic linearchemicalkinetics. Butthankstotherecentdevelopmentinbothmeso- scopic, stochastic nonequilibrium thermodynamics and the resurgent inter- estsinthestochasticdescription ofnonlinearmass-actionkineticsystems,a cross-fertilization ispossible. In this paper, we revisit the notion of macroscopic, chemical reaction entropy production σ(tot)[x] [15, 24, 25], and show it can also be decom- posedintotwopartsσ(tot)[x] =σ(fd)[x]+σ(hk)[x],inwhichσ(fd)[x]isthe negative time derivative of a generalized free energy function A[x]. More interestingly, both σ(fd)[x] and σ(hk)[x] can be mathematically proven as non-negativity for kinetic systems with complex balance. Since the A[x] is defined with respect to a positive steady state of the kinetic system, it is no longer unique for systems with multi-stability. In fact, for a system with multi-stability, one can define A[x] with respect to one of the sta- ble steady states, then it necessarily has negative σ(fd)[x] for some x, thus σ(hk) > σ(tot) at the x. Wefurther show that for complex balanced kinetic systems these natually defined macroscopic quantities are the macroscopic limits of the mesoscopic free energy dissipation f and house-keeping heat d Q , according to the stochastic kinetic description of the same chemical hk kinetics. 2 Nonequilibriumthermodynamicsof chem- ical reaction network Inthepresentpaper,wedonotassumetherateconstantsk±ℓsatisfyWegscheider- Lewis cycle condition unless stated otherwise. We do assume, however, that the macroscopic kinetic system (2) has a positive steady state xss = xss,1 i N . Motivatedbytherecentstudies onmesoscopic, stochas- { i ≤ ≤ } tic thermodynamics [1, 3, 26], we introduce a decomposition of the instan- taneous rate of total entropy production of the mass-action kinetic system following Eq. 2, σ(tot)[x] [27, 24, 25], into two nonequilibrium compo- nents, a house-keeping heat part [28, 29, 30] and a free energy dissipation part: M J (x) σ(tot) x = J+ℓ(x) J−ℓ(x) ln +ℓ = σ(hk)+σ(f(d8),a) (cid:2) (cid:3) Xℓ=1(cid:16) − (cid:17) (cid:18)J−ℓ(x)(cid:19) M J xss σ(hk)(cid:2)x(cid:3) = Xℓ=1(cid:16)J+ℓ(x)−J−ℓ(x)(cid:17)ln J+−ℓℓ(cid:0)xss(cid:1)!, (8b) σ(fd)(cid:2)x(cid:3) = XℓM=1(cid:16)J+ℓ(x)−J−ℓ(x)(cid:17)ln(cid:18)JJ+−ℓℓ(((cid:0)xx))JJ(cid:1)−+ℓℓ((xxssss))(cid:19). (8c) 4 Both σ(tot) x and σ(hk) x have the generic form of “net flux in reac- tion ℓ” “thermodynamic force per ℓth reaction”. Thelatter are expressed × (cid:2) (cid:3) (cid:2) (cid:3) in terms of the ratio of forward and backward one-way fluxes. This is an insight thatgoesbackatleasttoT.L.Hill[22]ifnotearlier, asdiscussed in [27]. For the term in (8b), we adopt the idea of Hatano and Sasa who first introduced housekeeping heat as the product of transient thermodynamic fluxesandsteady-statethermodynamicforce[29]. Sincethen,therearesev- eral different definitions under the same name [31, 32]. We also note that the one-way fluxes in chemical kinetics are nonlinear functions of concen- trations ingeneral, whileone-way-fluxes inmesocopic stochastic dynamics are always linear functions of state probabilities, similar to a unimolecular reactionnetwork. Thermodynamicforcesofawiderangeofprocesses have aunifying expression intermsofone-way-fluxes [27]. We also note that all three quantities in (8) can be explicitly computed if the rate lawsJ±ℓ(x) aswell as a kinetic steady state xss are known. Be- fore introducing a further assumption of complex balanced kinetics in Sec. 2.2, we first discuss key characteristics of the three macroscopic quantities introduced inEq. 8. 2.1 Keycharacteristicsofthethreemacroscopicquan- tities First, theforemost, σ(tot)[x] 0. Itiszeroifandonlyifatanx,J (x) = +ℓ ≥ J−ℓ(x) ℓ. Thisimpliesthexisasteadystateof(2),anditactuallysatisfies ∀ the detailed balance. Inthis case, one introduces ascalar function based on thesteadystatexss: N x (t) A[x] = x (t)ln j x (t)+xss . (9) j xss − j j j=1" j ! # X Usingthisfunction, itcanbeshown(seebelow)thatifakinetic system has suchanequilibriumsteadystate,itisunique. Theequilibriumxssin(9)can then be expressed in terms of intrinsic properties of the chemical species, e.g., the µ’s. In the chemical kinetics literature, the A[x] first appeared as Shear’s Liapunov function for kinetics with detailed balance [9, 33]. Horn and Jackson called it pseudo-Helmholtz function for complex balanced but notdetailbalanced systems[16]. Second, if a steady state xss is detail balanced, then σ(hk) x 0 x. ≡ ∀ Otherwise, σ(hk) xss > 0 for any steady state, stable or unstable. Then (cid:2) (cid:3) there must be a concentration region, near xss, in which σ(hk) x > 0. (cid:2) (cid:3) Therefore, σ(hk)[x] can only be negative, if ever, when x is far from any (cid:2) (cid:3) steadystate. 5 Third,σ(fd) x isthetimederivativeofA[x(t)]givenin(9),whenx(t) followstherateequation (2): (cid:2) (cid:3) N dA[x] dx (t) x (t) j j = ln dt dt xss j=1 j ! X N M N N x = κℓj −νℓj k+ℓ xνiℓi −k−ℓ xκiℓi ln xsjs Xj=1"Xℓ=1(cid:16) (cid:17) Yi=1 Yi=1 !# j ! M N N N κℓj−νℓj x = k+ℓ xνiℓi −k−ℓ xκiℓi ln xsjs ℓ=1 i=1 i=1 !j=1 j ! X Y Y X = XℓM=1(cid:16)J+ℓ −J−ℓ(cid:17)ln(cid:18)J+JℓJ−−ℓJℓ(+sxsℓss)(cid:19) = −σ(fd)[x]. (10) Inotherwords, N ∂A[x] σ(fd)[x] = F (x), (11) i − ∂x i i=1(cid:18) (cid:19) X in which ddxti = Fi(x) = Mℓ=1 κℓi − νℓi J+ℓ(x) − J−ℓ(x) , i.e. the right hand side of (2). Noticing t(cid:16)hat A[x] a(cid:17)tt(cid:16)ains its global mini(cid:17)mum 0 at P xss, Eq. 11 dictates xσ(fd)[xss] = 0. Todetermine whether σ(fd)[xss]is ∇ amaximum,minimum,orsaddlepoint,wecomputetheHessianmatrix : H ∂2σ(fd)[xss] xss ij H ≡ ∂x ∂x i j (cid:2) (cid:3) N ∂2A[xss] ∂F (xss) ∂2A[xss] ∂F (xss) k k = + − ∂x ∂x ∂x ∂x ∂x ∂x k=1(cid:20)(cid:18) k i (cid:19) j (cid:18) k j (cid:19) i (cid:21) X 1 ∂F (xss) 1 ∂F (xss) i j = . (12) −xss ∂x − xss ∂x i j j i Note matrix Γ, γ = ∂Fi(xss), defines the linear stability of xss. If we ij ∂xj denoteΘ = diag (xss)−1 ,then { i } = ΘΓ+ΓTΘ . (13) H − (cid:0) (cid:1) There is a precise relationship between the Jacobian matrix and Hessian matrixnearanxss. In one-dimensional case, and Γ always have opposite signs, since a H steady state is positive. In high-dimensional case, however, even if all the eigenvalues ofΓarenegative,whichimpliesthesteadystatexss isstable,it 6 isstillpossible forasymmetric tohavenegativeeigenvalues, resulting in H negativeσ(fd)[x]nearastablefixedpoint. Asimpleexampleofsuchis 1 2 5 0 10 7 Γ = , Θ = , = − − , 3 4 0 1 H 7 8 (cid:18) − − (cid:19) (cid:18) (cid:19) (cid:18) − (cid:19) in which matrix Γ has eigenvalues 1and 2, but has a negative eigen- − − H value 1 √130. − − Concentrationsofspecieswithlinearconstraints. Inchemicalkinetics, theconcentrations ofmanydifferent chemical species areoftenconstrained bythestoichiometric matrix. Infact, matrix ,withelements s = (κ jℓ ℓj S − ν ),oftenhasahigh-dimensional leftnullspacewithvector(q , ,q ): ℓj 1 N ··· N N q s = (κ ν )q =0, ℓ. (14) j jℓ ℓj ℓj j − ∀ j=1 j=1 X X Eachlinearly independent null vector represents aconservation ofacertain chemicalgroupintheentirechemicalreactionsystem: N N d dx (t) j q x (t)= q = 0. (15) j j j dt dt j=1 j=1 (cid:18) (cid:19) X X If the left null space of is d dimensional, then there are only (N d) S − independent differential equations inthesystem (2). TheJacobian matrixΓ near a fixed point xss has a rank equal or lower than (N d). As shown − in Appendix B, there exists an N (N d) constant matrix with rank × − Z (N d), the spanned space of whose column vectors are the same as the − spanned spaceofthecolumnvectorsof . S In terms of the and an (N d) N constant matrix , such that UZ = IN−d. Eq. 2Zbecomes ddt~δ(t−) = F~×~δ ,inwhichZ~δ(t) =Ux(t)−xss and ~ ~δ = F~ xss+ ~δ . F~(x) = F (x) istherighthandsideofEq. F U Z { (cid:0)i (cid:1) } (2). (cid:0) (cid:1) (cid:0) (cid:1) Therefore, Γδ = Γ is the linear matrix of the equation d~δ(t) = U Z dt ~ ~δ at ~δ = 0, which determines the stability of the original steady state F xssconstrainedbytheconservationrelations. AndtheHessianmatrix δ of σf(cid:0)d w(cid:1)ithrespecttothevariable~δwithoutconstrainbecomes δ = TH . H Z HZ Furthermore, since = , is an identity mapping from the ZUZ Z ZU space spanned by the column vectors in to itself. Hence we have = Z S andF~ = J~= J~,followedby Γ = Γ. Then ZUS S ZUS ZU δ = T = T Θ Γ+ΓT T TΘ H Z HZ −Z ZU U Z Z = TΘ Γδ (cid:16)Γδ T TΘ , (cid:17) (16) − Z Z − Z Z inwhich(N d) (N(cid:0) d)m(cid:1)etrix,(cid:0)and(cid:1)sy(cid:0)mmetrix(cid:1)matrix TΘ isno − × − Z Z longerdiagonal (compared withEq. 13). (cid:0) (cid:1) 7 2.2 Complex balanced kinetics and non-negativity of σ(hk) and σ(fd) Macroscopic house-keeping heat. In stochastic thermodynamics, house- keeping heat [29, 3] is also known as adiabatic instantaneous entropy pro- ductionrate[1,4]. Ifthemacroscopicreactionsystem(1)isinasteady-state xss,theℓthreversiblereactionhasachemicalfreeenergydissipationperoc- currence ∆µsℓs = kBT ln J+ℓ(xss)/J−ℓ(xss) [6]. Therefore, inkBT unit andsumoverallM reversiblereactions wehave (cid:0) (cid:1) M ∆µss σ(hk) x = (J+ℓ(x) J−ℓ(x)) ℓ − k T B ℓ=1 (cid:2) (cid:3) X M J+ℓ(xss) J−ℓ(xss) = ℓ=1(cid:20)J+ℓ(x)ln(cid:18)J−ℓ(xss)(cid:19)+J−ℓ(x)ln(cid:18)J+ℓ(xss)(cid:19)(cid:21) X M J−ℓ(xss) J+ℓ(xss) ≥ ℓ=1(cid:20)J+ℓ(x)(cid:18)1− J+ℓ(xss)(cid:19)+J−ℓ(x)(cid:18)1− J−ℓ(xss)(cid:19)(cid:21) X M = J+ℓ xss −J−ℓ xss JJ++ℓℓ(xxss) − JJ−−ℓℓ(xxss) !. Xℓ=1(cid:16) (cid:0) (cid:1) (cid:0) (cid:1)(cid:17) (17) (cid:0) (cid:1) (cid:0) (cid:1) Foranequilibriumsteadystate,detailedbalanceimpliesJ+ℓ(xeq) J−ℓ(xeq)= − 0forallℓ. Thereforetherhsof(17)iszerofordetailed balanced system. Generalized free energy dissipation. Free energy dissipation [1, 3] is alsoknownasnon-adiabaticinstantaneousentropyproductionrate[4],which isactuallythenegativetime-derivative ofageneralized freeenergy givenin (9). ThisA[x]figuredprominentlyinHornandJackson’stheory[16]. With- outtheassumption ofdetailed balance, σ(fd)[x] = −XℓM=1(cid:16)J+ℓ(x)−J−ℓ(x)(cid:17)ln(cid:18)JJ+−ℓℓ((xx))JJ−+ℓℓ((xxssss))(cid:19) M J−ℓ(x)J+ℓ(xss) J+ℓ(x)J−ℓ(xss) = −ℓ=1(cid:20)J+ℓ(x)ln(cid:18)J+ℓ(x)J−ℓ(xss)(cid:19)+J−ℓ(x)ln(cid:18)J−ℓ(x)J+ℓ(xss)(cid:19)(cid:21) X M J−ℓ(t)J+ℓ(xss) J+ℓ(t)J−ℓ(xss) ≥ −ℓ=1(cid:20)J+ℓ(cid:18)J+ℓ(t)J−ℓ(xss) −1(cid:19)+J−ℓ(cid:18)J−ℓ(t)J+ℓ(xss) −1(cid:19)(cid:21) X M = J+ℓ xss −J−ℓ xss JJ++ℓℓ(xxss) − JJ−−ℓℓx(xss) !. (18) Xℓ=1(cid:16) (cid:0) (cid:1) (cid:0) (cid:1)(cid:17) (cid:0) (cid:1) (cid:0) (cid:1) This is exactly the same rhs of (17). Therefore, σ(hk) and σ(fd) are both 8 no-less than M J+ℓ xss −J−ℓ xss JJ++ℓℓ(xxss) − JJ−−ℓℓx(xss) ! Xℓ=1(cid:16) (cid:0) (cid:1) (cid:0) (cid:1)(cid:17) M N (cid:0) x (cid:1) νℓi (cid:0)N (cid:1)x κℓi = J+ℓ xss −J−ℓ xss xsis − xsis (1.9) Xℓ=1(cid:16) (cid:0) (cid:1) (cid:0) (cid:1)(cid:17) Yi=1(cid:18) i (cid:19) Yi=1(cid:18) i (cid:19) ! Complex balanced chemical reaction networks. A chemical reaction system is “complex balanced” if and only if the rhs of (19) is zero for any x = (x ,x , ,x ) [16, 17, 18]. This is because any unique multi-type- 1 2 N ··· nomialterm N x ξi i xss i=1(cid:18) i (cid:19) Y representsaparticular“complex”(ξ X +ξ X + +ξ X ). Therefore, 1 1 2 2 N N ··· a complex balanced steady state has all the influx to the complex precisely balanced bytheoutfluxofthatcomplex: M N x ξi (Xℓ=1(cid:16)δκℓ,ξ −δνℓ,ξ(cid:17)(cid:16)J+ℓ(cid:0)xss(cid:1)−J−ℓ(cid:0)xss(cid:1)(cid:17))Yi=1(cid:18)xsiis(cid:19) = 0. (20) Detailed balance is a special case in which the Jss = Jss for every ℓ. De- +ℓ −ℓ tailed balance is a kinetic concept. Complex balance, however, has a topo- logicalimplication forareaction network[18,19]. Lyapunov function of complex balanced kinetics. Since dA x = dt { } σ(fd)[x] 0forareactionnetworkwithcomplexbalance,andA x − ≤ (cid:2){ }(cid:3) ≥ 0, it is a Lyapunov function for the mass-action kinetics. The convexity of A[ x ] is easy to establish: ∂2A/∂x ∂x = x−1δ . Therefore, o(cid:2)ne c(cid:3)on- { } i j i ij cludes that the steady state xss of a complex balanced reaction kinetics is unique. Thisisawell-knownresultandtheproofwasgivenin[16]. Theex- istence of this Lyapunov function A[ x ] for kinetic systems with complex { } balance haspromptedHornandJackson’s description ofa“quasithermody- namics”. Infact,anequally significantresultisthefollowingstatement: For reaction system with non-complex balanced kinetics, if the macroscopicfreeenergydissipationσ(fd)[x]isnon-negative for all x, then the kinetics has a unique steady state. Equivalently, if a kinetic system is multi-stable, then σ(fd)[x] is negative for somex,whereσ(hk)[x] > σ(tot)[x]. 9 3 Macroscopic limit of mesoscopic stochas- tic thermodynamics 3.1 KineticdescriptionaccordingtoDelbru¨ckandGille- spie’s model Themacroscopicchemicalthermodynamicspresentedabovedoesnotrefer- ence to anything with probability. But the very notion of Gibbs’ chemical potentialhasadeeprootinit. Chemicalreactionsattheindividualmolecule level are stochastic [34]. A mathematically more accurate description of the chemical kinetics in system (1) is the stochastic theory of Chemical Master Equation (CME) first appeared in the work of Leontovich [35] and Delbru¨ck [36], whose fluctuating trajectories can be exactly computed us- ing the stochastic simulation method widely known as Gillespie algorithm [37]. Notethese two descriptions are not twodifferent theories, rather they are the two aspects of a same Markov process, just as the diffusion equa- tion and the Langevin-equation descriptions of a same Brownian motion. More importantly, this probabilistic description and Waage-Guldberg’s law of mass action are also two parts of a same dynamic theory: The latter is the limit of the former if fluctuations are sufficiently small, when the vol- ume of the reaction system, V, is large [38]. In fact, the key quantity in Delbru¨ck-Gillespie’s descriptionofmesoscopicchemicalkineticsistherate of aparticular reaction, called propensity function. Forthe ℓth forward and backwardreactions, theyare n n ! j u (n) = k V , (21a) ℓ +ℓ (nj νℓj)!Vνℓj j=1(cid:18) − (cid:19) Y n n ! j wℓ(n) = k−ℓV (nj νℓj)!Vκℓj . (21b) j=1(cid:18) − (cid:19) Y Oneseesthatinthemacroscopic limitV ,V−1u (Vx) = J (x)and ℓ +ℓ V−1wℓ(Vx) = J−ℓ(x),wherex= n/V.→ ∞ Thestochastic trajectory canbeexpressed intermsoftherandom-time- changed Poissonrepresentation: n (t) = n (0)+ (22) j j M t t κℓj νℓj Y+ℓ uℓ n(s) ds Y−ℓ wℓ n(s) ds , − − Xℓ=1(cid:16) (cid:17)(cid:26) (cid:18)Z0 (cid:16) (cid:17) (cid:19) (cid:18)Z0 (cid:16) (cid:17) (cid:19)(cid:27) whereY±ℓ(t)are2ℓindependent, standardPoissonprocesses: tn Pr Y(t) = n = e−t, Y(0) = 0. (23) n! (cid:8) (cid:9) 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.