ebook img

Noncommutative Stationary Processes PDF

147 Pages·2004·1.243 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Noncommutative Stationary Processes

1839 Lecture Notes in Mathematics Editors: J.--M.Morel,Cachan F.Takens,Groningen B.Teissier,Paris 3 Berlin Heidelberg NewYork HongKong London Milan Paris Tokyo Rolf Gohm Noncommutative Stationary Processes 1 3 Author RolfGohm Ernst-Moritz-ArndtUniversityofGreifswald DepartmentofMathematicsandComputerScience Jahnstr.15a 17487Greifswald Germany e-mail:[email protected] Cataloging-in-PublicationDataappliedfor BibliographicinformationpublishedbyDieDeutscheBibliothek DieDeutscheBibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataisavailableintheInternetathttp://dnb.ddb.de MathematicsSubjectClassification(2000):46L53,46L55,47B65,60G10,60J05 ISSN0075-8434 ISBN3-540-20926-3Springer-VerlagBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965, initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer-Verlag.Violationsare liableforprosecutionundertheGermanCopyrightLaw. Springer-VerlagisapartofSpringerScience+BusinessMedia http://www.springeronline.com (cid:1)c Springer-VerlagBerlinHeidelberg2004 PrintedinGermany Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Typesetting:Camera-readyTEXoutputbytheauthors SPIN:10983744 41/3142/du-543210-Printedonacid-freepaper Preface Research on noncommutative stationary processes leads to an interesting in- terplay between operator algebraicand probabilistic topics. Thus it is always aninvitationtoanexchangeofideasbetweendifferentfields.Weexploresome new paths into this territory in this book. The presentation proceeds rather systematically and elaborates many connections to already known results as well as some applications. It should be accessible to anyone who has mas- tered the basics of operator algebras and noncommutative probability but, concentrating on new material, it is no substitute for the study of the older sources(mentionedinthe textatappropriateplaces).For aquick orientation see the Summary on the following page and the Introduction. There are also additional introductions in the beginning of each chapter. The text is a revised version of a manuscript entitled ‘Elements of a spa- tial theory for noncommutative stationary processes with discrete time in- dex’, which has been written by the author as a habilitation thesis (Greifs- wald, 2002). It is impossible to give a complete picture of all the mathemat- ical influences on me which shaped this work. I want to thank all who have been engaged in discussions with me. Additionally I want to point out that B.Ku¨mmerer and his students C.Hertfelder and T.Lang, sharing some of their conceptions with me in an early stage, influenced the conception of this work.Getting involvedwith the researchofC.Ko¨stler,B.V.R.Bhat,U.Franz and M.Schu¨rmann broadened my thinking about noncommutative probabil- ity. Specialthanks to M.Schu¨rmannfor alwayssupporting me in my struggle tofindenoughtime towrite.ThanksalsotoB.Ku¨mmererandtothe referees oftheoriginalmanuscriptformanyusefulremarksandsuggestionsleadingto improvements in the final version. The financial support by the DFG is also gratefully acknowledged. Greifswald Rolf Gohm August 2003 Summary Inthefirstchapterweconsidernormalunitalcompletelypositivemapsonvon Neumann algebras respecting normal states and study the problem to find normalunital completely positive extensions acting on allbounded operators oftheGNS-Hilbertspacesandrespectingthecorrespondingcyclicvectors.We show that there exists a duality relating this problem to a dilation problem on the commutants. Some explicit examples are given. In the second chapter we review different notions of noncommutative Markov processes, emphasizing the structure of a coupling representation. We derive related results on Cuntz algebra representations and on endomor- phisms.Inparticularweproveaconjugacyresultwhichturnsouttobeclosely related to Ku¨mmerer-Maassen-scatteringtheory.The extension theory of the first chapter applied to the transition operators of the Markov processes can be used in a new criterion for asymptotic completeness. We also give an in- terpretation in terms of entangled states. In the third chapter we give an axiomatic approach to time evolutions of stationary processes which are non-Markovian in general but adapted to a given filtration. We call this an adapted endomorphism. In many cases it can be written as an infinite product of automorphisms which are localized with respect to the filtration. Again considering representations on GNS-Hilbert spaces we define adapted isometries and undertake a detailed study of them in the situation where the filtration can be factorized as a tensor product. Then it turns out that the same ergodic properties which have been used in the second chapter to determine asymptotic completeness now determine the asymptotics of nonlinear prediction errors for the implemented process and solve the problem of unitarity of an adapted isometry. In the fourth chapter we give examples. In particular we show how com- mutativeprocessesfitintothe scheme andthatby choosingsuitable noncom- mutative filtrations and adapted endomorphisms our criteria give an answer toaquestionaboutsubfactorsinthetheoryofvonNeumannalgebras,namely when the range of the endomorphism is a proper subfactor. Contents Introduction................................................. 1 1 Extensions and Dilations .................................. 9 1.1 An Example with 2×2 - Matrices ......................... 10 1.2 An Extension Problem ................................... 13 1.3 Weak Tensor Dilations ................................... 14 1.4 Equivalence of Weak Tensor Dilations...................... 19 1.5 Duality ................................................ 21 1.6 The Automorphic Case................................... 25 1.7 Examples............................................... 28 2 Markov Processes ......................................... 37 2.1 Ku¨mmerer’s Approach ................................... 38 2.2 Bhat’s Approach ........................................ 42 2.3 Coupling Representation on a Hilbert Space ................ 45 2.4 Cuntz Algebra Representations............................ 47 2.5 Cocycles and Coboundaries ............................... 52 2.6 Ku¨mmerer-Maassen-ScatteringTheory ..................... 60 2.7 Restrictions and Extensions............................... 63 2.8 An Interpretation Using Entanglement ..................... 68 3 Adaptedness............................................... 73 3.1 A Motivation: Hessenberg Form of an Isometry.............. 74 3.2 Adapted Endomorphisms – An Abstract View .............. 79 3.3 Adapted Endomorphisms and Stationary Processes .......... 86 3.4 Adapted Isometries on Tensor Products of Hilbert Spaces..... 90 3.5 Nonlinear Prediction Errors...............................102 3.6 The Adjoint of an Adapted Isometry.......................106 VIII Contents 4 Examples and Applications ................................113 4.1 Commutative Stationarity ................................114 4.2 Prediction Errors for Commutative Processes ...............128 4.3 Low-Dimensional Examples...............................132 4.4 Clifford Algebras and Generalizations ......................136 4.5 Tensor Products of Matrices ..............................139 4.6 Noncommutative Extension of Adaptedness.................144 AppendixA: Some Facts about Unital Completely Positive Maps ...........149 A.1 Stochastic Maps.........................................149 A.2 Representation Theorems.................................150 A.3 The Isometry v .........................................154 A.4 The Preadjoints C and D ................................157 A.5 Absorbing Vector States..................................160 References.....................................................165 Index..........................................................169 Flow Diagram for the Sections 1.4(cid:2)(cid:4)(cid:4) (cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:3)(cid:3) 1.(cid:1)(cid:1)3(cid:4)(cid:3)(cid:4)(cid:4) (cid:4)(cid:3)(cid:4)(cid:3)(cid:4)(cid:3)(cid:4)(cid:3)(cid:4)(cid:3)1(cid:4)(cid:3).(cid:4)(cid:3)(cid:1)(cid:1)1(cid:4)(cid:3)(cid:4)(cid:1)(cid:3)(cid:4)(cid:3)(cid:1)(cid:4)(cid:3)(cid:1)(cid:4)(cid:3)(cid:1)(cid:4)(cid:3)(cid:1)(cid:4)(cid:5)(cid:5)(cid:1)(cid:4)(cid:1)(cid:4)(cid:1)(cid:4)(cid:1)(cid:4)(cid:1)(cid:4)(cid:1)(cid:4)(cid:1)(cid:4)(cid:1)(cid:4)(cid:1)(cid:2)(cid:2)(cid:6)(cid:6)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:6)(cid:6)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:6)(cid:6) (cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:6)(cid:6)(cid:2)(cid:2) 1.(cid:1)(cid:1)5 1.2 2.2 2.(cid:7)(cid:7)3 2.4 2.5(cid:5)(cid:5)(cid:5)(cid:5)(cid:5)(cid:5)(cid:8)(cid:8)2.(cid:1)(cid:1)7 (cid:6)(cid:6) (cid:6)(cid:6) (cid:6)(cid:6) 1.(cid:1)(cid:1)6 2.(cid:1)(cid:1)1(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:3)(cid:3) 2.6 2.8 (cid:6)(cid:6) (cid:6)(cid:6) (cid:6)(cid:6) 1.7(cid:6)(cid:6)(cid:6)(cid:6)(cid:6)(cid:6)3(cid:6).(cid:6)1(cid:6)(cid:6)(cid:6)(cid:6)(cid:6)(cid:6)(cid:6)(cid:6)3(cid:6).2(cid:6)(cid:7)(cid:6)(cid:7)(cid:6)(cid:7)(cid:7)(cid:6)(cid:7)(cid:6)(cid:7)(cid:7)(cid:6)(cid:7)(cid:6)(cid:7)(cid:7)(cid:6)34(cid:10)(cid:10)(cid:6)..(cid:1)(cid:1)(cid:6)31(cid:6)(cid:3)(cid:6)(cid:3)(cid:6)(cid:3)(cid:6)(cid:3)(cid:6)(cid:3)(cid:6)(cid:3)(cid:9)(cid:9)(cid:6)(cid:6)433(cid:3)...(cid:3)(cid:1)(cid:1)(cid:1)(cid:1)245(cid:3)(cid:11)(cid:11)(cid:8)(cid:8)(cid:2)(cid:2)(cid:3)(cid:8)(cid:2)(cid:2)(cid:3)(cid:8)(cid:2)(cid:2)(cid:8)(cid:3)(cid:2)(cid:2)(cid:8)(cid:3)(cid:8)(cid:2)(cid:2)(cid:8)(cid:3)(cid:2)(cid:2)(cid:8)(cid:6)(cid:6)(cid:3)(cid:3)(cid:3)(cid:3)(cid:5)(cid:5)(cid:8)43..(cid:1)(cid:1)36(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:2)(cid:3)(cid:3)4.4 4.5 4.6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.