ebook img

Noncommutative Mathematics for Quantum Systems PDF

199 Pages·2016·1.862 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Noncommutative Mathematics for Quantum Systems

Cambridge - IISc Series NoncommutativeMathematicsforQuantumSystems Noncommutativemathematicsisasignificantnewtrendofmathematics in the twentieth century. Initially motivated by the formulation and developmentofquantumphysicsduetoHeisenbergandvonNeumann, the idea of ‘making a theory noncommutative’ has been extended to many areas of pure and applied mathematics. An example is quantum probability, describing the probabilistic aspects of quantum mechanics. Thegeneralizationfromclassicaltoquantumhappenshereintwosteps: first the theory is reformulated in terms of algebras of functions on probabilityspaces,thenthecommutativityconditionisdropped. Thisbookfocusesontwocurrentareasofnoncommutativemathematics: quantumprobabilityandquantumdynamicalsystems. The first part of the book provides an introduction to quantum probability and quantum Le´vy processes. It provides introduction to the notion of independence in quantum probability. The theory of quantum stochastic processes with independent and stationary increments is also highlighted. The second part provides an introduction to quantum dynamical systems. It focuses on analogies with fundamental problems studiedinclassicaldynamics. The text underlines the balance between two crucial aspects of noncommutative mathematics. On one hand the desire to build an extension of the classical theory provides new, original ways to understandwell-known’commutative’resultsandontheotherhandthe richness of the quantum mathematical world presents completely novel phenomena, never encountered in the classical setting. This text will be useful to students and researchers in noncommutative probability, mathematicalphysicsandoperatoralgebras. Uwe Franz is Professor at the University of Franche-Comte´ in Besanc¸on (France) since 2005. He authored the book ’Stochastic Processes and Operator Calculus on Quantum Groups’, edited four books on quantum probability and has written over fifty peer-reviewed research papers in the area of noncommutative mathematics. His areas of interest include noncommutative probability, quantum stochastic processes, quantum stochasticcalculusandprobabilityonquantumgroups. Adam Skalski is Associate Professor at the Institute of Mathematics, PolishAcademyofSciencesandattheUniversityofWarsaw,Poland.He has been awarded the Kuratowski Prize of the Polish Mathematical Society in 2008 and the Sierpin´ski Prize of the Polish Academy of Sciences in 2014. His areas of interest include topological quantum groups,operatoralgebrasandquantumstochasticprocesses. CAMBRIDGE-IIScSERIES Cambridge-IIScSeriesaimstopublishthebestresearchandscholarlywork on different areas of science and technology with emphasis on cutting- edgeresearch. The books will be aimed at a wide audience including students, researchers,academiciansandprofessionalsandwillbepublishedunder three categories: research monographs, centenary lectures and lecture notes. The editorial board has been constituted with experts from a range of disciplines in diverse fields of engineering, science and technology from theIndianInstituteofScience,Bangalore. IIScPressEditorialBoard: G.K.Ananthasuresh,Professor,DepartmentofMechanicalEngineering K.KesavaRao,Professor,DepartmentofChemicalEngineering GadadharMisra,Professor,DepartmentofMathematics T.A.Abinandanan,Professor,DepartmentofMaterialsEngineering DiptimanSen,Professor,CentreforHighEnergyPhysics Cambridge - IISc Series Noncommutative Mathematics for Quantum Systems UweFranz AdamSkalski 4843/24,2ndFloor,AnsariRoad,Daryaganj,Delhi-110002,India CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107148055 (cid:13)c UweFranzandAdamSkalski2016 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2016 PrintedinIndia AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguing-in-Publicationdata Franz,Uwe. Noncommutativemathematicsforquantumsystems/UweFranz,AdamSkalski. pagescm Includesbibliographicalreferencesandindex. Summary: ”Discusses two current areas of noncommutative mathematics, quantum probabilityandquantumdynamicalsystems”–Providedbypublisher. ISBN978-1-107-14805-5(hardback) 1. Probabilities. 2. Quantum theory. 3. Potential theory (Mathematics) I. Skalski, Adam, 1978-II.Title. QC174.17.P68F732016 530.13’3–dc23 2015032903 ISBN978-1-107-14805-5Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication, anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. WewouldliketodedicatethisbooktoMarysia, whowas11daysoldwhentheBangaloreschoolbegan. Contents Preface xi Conferencephoto xiv Introduction xv 1 IndependenceandLe´vyProcessesinQuantumProbability 1 1.1 Introduction 1 1.2 WhatisQuantumProbability? 4 1.2.1 Distinguishingfeaturesofclassicalandquantum probability 11 1.2.2 Dictionary‘Classical↔Quantum’ 13 1.3 WhydoweNeedQuantumProbability? 15 1.3.1 Mermin’sversionoftheEPRexperiment 15 1.3.2 Gleason’stheorem 20 1.3.3 TheKochen–Speckertheorem 21 1.4 InfiniteDivisibilityinClassicalProbability 23 1.4.1 Stochasticindependence 23 1.4.2 Convolution 23 1.4.3 Infinitedivisibility,continuousconvolution semigroups,andLe´vyprocesses 23 1.4.4 TheDeFinetti–Le´vy–Khintchineformulaon (R+,+) 25 1.4.5 Le´vy–Khintchineformulaeoncones 25 1.4.6 TheLe´vy–Khintchineformulaon(Rd,+) 26 1.4.7 TheMarkovsemigroupofaLe´vyprocess 27 1.4.8 Hunt’sformula 27 1.5 Le´vyProcessesonInvolutiveBialgebras 29 1.5.1 DefinitionofLe´vyprocessesoninvolutive bialgebras 29 1.5.2 ThegeneratingfunctionalofaLe´vyprocess 34 1.5.3 TheSchu¨rmanntripleofaLe´vyprocess 36 1.5.4 Examples 41 1.6 Le´vyProcessesonCompactQuantumGroupsandtheir MarkovSemigroups 42 viii Contents 1.6.1 Compactquantumgroups 43 1.6.2 TranslationinvariantMarkovsemigroups 48 1.7 IndependencesandConvolutionsinNoncommutative Probability 55 1.7.1 NevanlinnatheoryandCauchy–Stieltjes transforms 55 1.7.2 Freeconvolutions 57 1.7.3 AusefulLemma 60 1.7.4 Monotoneconvolutions 60 1.7.5 Booleanconvolutions 73 1.8 TheFiveUniversalIndependences 83 1.8.1 Algebraicprobabilityspaces 87 1.8.2 Classicalstochasticindependenceandtheproduct ofprobabilityspaces 88 1.8.3 Productsofalgebraicprobabilityspaces 90 1.8.4 Classificationoftheuniversalindependences 94 1.9 Le´vyProcessesonDualGroups 98 1.9.1 Dualgroups 98 1.9.2 DefinitionofLe´vyprocessesondualgroups 101 1.9.3 Timereversal 103 1.10 OpenProblems 105 References 107 2 QuantumDynamicalSystemsfromthePointofViewof NoncommutativeMathematics 121 2.1 NoncommutativeMathematicsandQuantum/ Noncommutativedynamicalsystems 121 2.1.1 NoncommutativeMathematics–Gelfand–Naimark Theorem 122 2.1.2 Quantumtopologicaldynamicalsystemsandsome propertiesoftransformationsofC∗-algebras 123 2.1.3 Cuntzalgebras 126 2.1.4 GraphC∗-algebras 128 2.1.5 C∗-algebrasassociatedwithdiscretegroups 130 2.2 NoncommutativeTopologicalEntropyofVoiculescu 131 2.2.1 EndomorphismsofCuntzalgebrasandaquantum shift 132 Contents ix 2.2.2 TheshifttransformationonagraphC∗-algebra 134 2.2.3 ClassicaltopologicalentropyasdefinedbyRufus Bowenandextensionstotopologicalpressure 134 2.2.4 Finite-dimensionalapproximationsinthetheory ofC∗-algebras 136 2.2.5 Noncommutativetopologicalentropy(Voiculescu topologicalentropy) 137 2.3 VoiculescuEntropyoftheShiftandotherExamples 141 2.3.1 EstimatingtheVoiculescuentropyofthe permutativeendomorphismsofCuntzalgebras 141 2.3.2 TheVoiculescuentropyofthenoncommutative shiftandrelatedquestions 145 2.3.3 GeneralizationstographC∗-algebrasandto noncommutativetopologicalpressure 146 2.3.4 AutomorphismwhoseVoiculescuentropyis genuinelynoncommutative 147 2.3.5 Automorphismthatleavesnonon-trivialabelian subalgebrasinvariant 149 2.4 CrossedProductsandtheEntropy 152 2.4.1 Crossedproducts 152 2.4.2 TheVoiculescuentropycomputationsforthemaps extendedtocrossedproducts 154 2.5 Quantum‘Measurable’DynamicalSystemsand ClassicalErgodicTheorems 157 2.5.1 Measurabledynamicalsystemsandindividual ergodictheorem 157 2.5.2 GNSconstructionandthepassagefromtopological tomeasurablenoncommutativedynamical systems 158 2.6 NoncommutativeErgodicTheoremofLance; ClassicalandQuantumMultiRecurrence 163 2.6.1 Meanergodictheorem(s)invonNeumann algebras 163 2.6.2 AlmostuniformconvergenceinvonNeumann algebras 166 2.6.3 Lance’snoncommutativeindividualergodic theoremandsomecommentsonitsproof 167 2.6.4 Classicalmultirecurrence 168

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.