Noncommutative Curves of Genus Zero Related to Finite Dimensional Algebras This page intentionally left blank M EMOIRS of the American Mathematical Society Number 942 Noncommutative Curves of Genus Zero Related to Finite Dimensional Algebras Dirk Kussin (cid:1)(cid:2)(cid:3)(cid:4)(cid:2)(cid:5)(cid:6)(cid:2)(cid:7)(cid:8)(cid:9)(cid:10)(cid:10)(cid:11)(cid:8)(cid:8)(cid:12)(cid:8)(cid:8)(cid:13)(cid:14)(cid:15)(cid:16)(cid:5)(cid:2)(cid:8)(cid:9)(cid:10)(cid:17)(cid:8)(cid:8)(cid:12)(cid:8)(cid:8)(cid:18)(cid:16)(cid:5)(cid:6)(cid:2)(cid:7)(cid:8)(cid:11)(cid:19)(cid:9)(cid:8)(cid:20)(cid:21)(cid:22)(cid:7)(cid:23)(cid:4)(cid:8)(cid:14)(cid:21)(cid:8)(cid:24)(cid:8)(cid:25)(cid:16)(cid:5)(cid:6)(cid:2)(cid:7)(cid:23)(cid:26)(cid:8)(cid:8)(cid:12)(cid:8)(cid:8)(cid:27)(cid:1)(cid:1)(cid:18)(cid:8)(cid:10)(cid:10)(cid:28)(cid:24)(cid:29)(cid:11)(cid:9)(cid:28)(cid:28) American Mathematical Society Providence, Rhode Island 2000MathematicsSubjectClassification. Primary14H45,16G10;Secondary14H60,14A22. Library of Congress Cataloging-in-Publication Data Kussin,Dirk,1967– Noncommutativecurvesofgenuszero: relatedtofinitedimensionalalgebras/DirkKussin. p.cm. —(MemoirsoftheAmericanMathematicalSociety,ISSN0065-9266;no. 942) “Volume201,number942(firstof5numbers).” Includesbibliographicalreferencesandindex. ISBN978-0-8218-4400-7(alk.paper) 1. Curves, Algebraic. 2. Representations of rings (Algebra) 3. Noncommutative algebras. I.Title. QA565.K87 2009 516.3(cid:1)52—dc22 2009019382 Memoirs of the American Mathematical Society Thisjournalisdevotedentirelytoresearchinpureandappliedmathematics. Subscription information. The 2009 subscription begins with volume 197 and consists of sixmailings,eachcontainingoneormorenumbers. Subscriptionpricesfor2009areUS$709list, US$567institutionalmember. Alatechargeof10%ofthesubscriptionpricewillbeimposedon orders received from nonmembers after January 1 of the subscription year. Subscribers outside the United States and India must pay a postage surcharge of US$65; subscribers in India must pay a postagesurchargeof US$95. Expedited delivery to destinations in NorthAmericaUS$57; elsewhereUS$160. Eachnumbermaybeorderedseparately;pleasespecifynumber whenordering anindividualnumber. Forpricesandtitlesofrecentlyreleasednumbers,seetheNewPublications sectionsoftheNoticesof the AmericanMathematicalSociety. Back number information. ForbackissuesseetheAMS Catalog of Publications. Subscriptions and orders should be addressed to the American Mathematical Society, P.O. Box 845904, Boston, MA 02284-5904USA. All orders must be accompanied by payment. Other correspondenceshouldbeaddressedto201CharlesStreet,Providence,RI02904-2294USA. Copying and reprinting. Individual readers of this publication, and nonprofit libraries actingforthem,arepermittedtomakefairuseofthematerial,suchastocopyachapterforuse in teaching or research. Permission is granted to quote brief passages from this publication in reviews,providedthecustomaryacknowledgmentofthesourceisgiven. Republication,systematiccopying,ormultiplereproductionofanymaterialinthispublication is permitted only under license from the American Mathematical Society. Requests for such permissionshouldbeaddressedtotheAcquisitionsDepartment,AmericanMathematicalSociety, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by [email protected]. MemoirsoftheAmericanMathematicalSociety(ISSN0065-9266)ispublishedbimonthly(each volume consisting usually of more than one number) by the American Mathematical Society at 201CharlesStreet,Providence,RI02904-2294USA.PeriodicalspostagepaidatProvidence,RI. Postmaster: Send address changes to Memoirs, American Mathematical Society, 201 Charles Street,Providence,RI02904-2294USA. (cid:1)c 2009bytheAmericanMathematicalSociety. Allrightsreserved. Copyrightofindividualarticlesmayreverttothepublicdomain28years afterpublication. ContacttheAMSforcopyrightstatusofindividualarticles. ThispublicationisindexedinScienceCitation Index(cid:1)R,SciSearch(cid:1)R,ResearchAlert(cid:1)R, CompuMath Citation Index(cid:1)R,Current Contents(cid:1)R/Physical,Chemical& Earth Sciences. PrintedintheUnitedStatesofAmerica. (cid:1)∞ Thepaperusedinthisbookisacid-freeandfallswithintheguidelines establishedtoensurepermanenceanddurability. VisittheAMShomepageathttp://www.ams.org/ 10987654321 141312111009 Dedicated to the memory of my beloved partner Gordana Stani´c This page intentionally left blank Contents Introduction 1 Chapter 0. Background 11 0.1. Notation 11 0.2. One-parameter families, generic modules and tameness 11 0.3. Canonical algebras and exceptional curves 14 0.4. Tubular shifts 19 0.5. Tame bimodules and homogeneous exceptional curves 22 0.6. Rational points 24 Part 1. The homogeneous case 27 Chapter 1. Graded factoriality 29 1.1. Efficient automorphisms 30 1.2. Prime ideals and universal extensions 33 1.3. Prime ideals as annihilators 35 1.4. Noetherianness 38 1.5. Prime ideals of height one are principal 39 1.6. Unique factorization 41 1.7. Examples of graded factorial domains 43 The non-simple bimodule case 44 The quaternion case 46 The square roots case 46 Chapter 2. Global and local structure of the sheaf category 49 2.1. Serre’s theorem 49 2.2. Localization at prime ideals 51 2.3. Noncommutativity and the multiplicities 56 2.4. Localizing with respect to the powers of a prime element 58 2.5. Zariski topology and sheafification 59 Chapter 3. Tubular shifts and prime elements 61 3.1. Central prime elements 61 3.2. Non-central prime elements and ghosts 62 Chapter 4. Commutativity and multiplicity freeness 69 4.1. Finiteness over the centre 69 4.2. Commutativity of the coordinate algebra 70 4.3. Commutativity of the function field 71 Chapter 5. Automorphism groups 75 vii viii CONTENTS 5.1. The automorphism group of a homogeneous curve 76 5.2. The structure of Aut(H) 77 5.3. The twisted polynomial case 78 5.4. On the Auslander-Reiten translation as functor 80 5.5. The quaternion case 82 5.6. The homogeneous curves over the real numbers 82 5.7. Homogeneous curves with finite automorphism group 85 Part 2. The weighted case 87 Chapter 6. Insertion of weights 89 6.1. p-cycles 89 6.2. Insertion of weights into central primes 91 6.3. Automorphism groups for weighted curves 95 Chapter 7. Exceptional objects 97 7.1. Transitivity of the braid group action 97 7.2. Exceptional objects and graded factoriality 99 Chapter 8. Tubular exceptional curves 101 8.1. Slope categories and the rational helix 102 8.2. The index of a tubular exceptional curve 105 8.3. A tubular curve of index three 107 8.4. A related tubular curve of index two 109 8.5. Line bundles which are not exceptional 110 Appendix A. Automorphism groups over the real numbers 113 A.1. Tables for the domestic and tubular cases 113 Appendix B. The tubular symbols 119 Bibliography 121 Index 127 Abstract In these notes we investigate noncommutative smooth projective curves of genuszero,alsocalledexceptionalcurves. Asamainresultweshowthateachsuch curve X admits, up to some weighting, a projective coordinate algebra which is a not necessarily commutative graded factorial domain R in the sense of Chatters andJordan. Moreover, thereisa naturalbijectionbetweenthepoints ofXand the homogeneous prime ideals of height one in R, and these prime ideals are principal in a strong sense. Curves of genus zero have strong applications in the representation theory of finite dimensional algebras being natural index sets for one-parameter families of indecomposable modules. They play a key role for an understanding of the notion oftamenessandconjecturallyforanextensionofDrozd’sTameandWildTheorem to arbitrary base fields. The function field of X agrees with the endomorphism ring of the unique generic module over the associated tame hereditary algebra. This skew field is of finite dimension over its centre which is an algebraic function field in one variable. As another main result we show that the function field is commutative if and only if the multiplicities determined by the homomorphism spaces from line bundles to simples sheaves (originally defined by Ringel for tame hereditary algebras) are equal to one for every point. The study provides major insights into the nature of arithmetic complications intherepresentationtheoryoffinitedimensionalalgebrasthatariseifthebasefield is not algebraically closed. ReceivedbytheeditorMarch19,2006andinrevisedformMarch18,2007. 2000MathematicsSubjectClassification. Primary14H45,16G10;Secondary14H60,14A22, 16S38. Keywordsandphrases. noncommutativecurve,genuszero,exceptionalcurve,one-parameter family,separatingtubularfamily,tamebimodule,canonicalalgebra,tubularalgebra,orbitalgebra, gradedfactorialdomain,efficientautomorphism,ghostautomorphism. ix