ebook img

Noncommutative Cross-Ratios PDF

0.1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Noncommutative Cross-Ratios

NONCOMMUTATIVE CROSS-RATIOS VLADIMIR RETAKH 4 1 0 1. Introduction 2 b The goal of this note is to present a definition and to discuss basic properties of cross- e ratios over (noncommutative) division rings or skew-fields. We present the noncommutative F cross-ratios as products of quasi-Plu¨cker coordinates introduced in [3] (see also [4]). Actually, 7 noncommutative cross-ratios were already mentioned in a remark in [3]. I decided to return 1 to the subject after my colleague Feng Luo explained to me the importance of cross-ratios in ] modern geometry (see, for example, [6, 7, 8]). A I have to thank Feng Luo for valuable discussions. This work was partially supported by R Simons Collaborative Grant. . h t a 2. Quasi-Plu¨cker coordinates m We recall here only the theory of quasi-Plu¨cker coordinates for 2 × n-matrices over a [ noncommutative division ring F. For general k×n-matrices the theory is presented in [3, 4]. 2 a a v Recall (see [1, 2] and subsequent papers) that for a matrix 1k 1i one can define four 0 a a 2k 2i 7 (cid:18) (cid:19) quasideterminants provided the corresponding elements are invertible: 7 5 a a a a 1. a1k a1i = a1k −a1ia−2i1a2k, a1k a1i = a1i −a1ka−2k1a2i, 0 (cid:12) 2k 2i(cid:12) (cid:12) 2k 2i (cid:12) 14 (cid:12)(cid:12)(cid:12) aa1k aa1i(cid:12)(cid:12)(cid:12) = a2k −a2ia−1i1a1k, (cid:12)(cid:12)(cid:12)aa1k aa1i (cid:12)(cid:12)(cid:12) = a2i −a2ka−1k1a1i. : 2k 2i 2k 2i v (cid:12) (cid:12) (cid:12) (cid:12) i a (cid:12) a ...(cid:12) a (cid:12) (cid:12) X Let A = 11(cid:12) 12 (cid:12) 1n be a matrix ov(cid:12)er F. (cid:12) a (cid:12) a ...(cid:12) a (cid:12) (cid:12) r (cid:18) 21 22 2n(cid:19) a Lemma 2.1. Let i 6= k. Then −1 −1 −1 a1k a1i a1k a1j a1k a1i a1k a1j = (cid:12)a2k a2i (cid:12) (cid:12)a2k a2j (cid:12) (cid:12)a2k a2i (cid:12) (cid:12)a2k a2j (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) if the corresponding expressions are defined. (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Note that in the formula the boxed elements on the left and on the right must be on the same level. Definition 2.2. We call the expressions −1 −1 −1 qk(A) = a1k a1i a1k a1j = a1k a1i a1k a1j ij (cid:12)a2k a2i (cid:12) (cid:12)a2k a2j (cid:12) (cid:12)a2k a2i (cid:12) (cid:12)a2k a2j (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) the quasi-Plu¨cker coordi(cid:12)nates of m(cid:12)atr(cid:12)ix A. (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Key words and phrases. cross-ratio,quasideterminant, quasi-Plu¨cker coordinate. 1 2 VLADIMIRRETAKH Our terminology is justified by the following observation. Recall that in the commutative case the expressions a a pik(A) = a1i a1k = a1ia2k −a1ka2i 2i 2k (cid:12) (cid:12) are the Plu¨cker coordinates of A. One(cid:12) can see(cid:12)that in the commutative case (cid:12) (cid:12) (cid:12) (cid:12) p (A) qk(A) = jk , ij p (A) ik i.e. quasi-Plu¨cker coordinates are ratios of Plu¨cker coordinates. Let us list properties of quasi-Plu¨cker coordinates over (noncommutative) division ring F. We sometimes write qk instead of qk(A) where it cannot lead to a confusion. ij ij 1). Let g be an invertible matrix over F. Then qk(g ·A) = qk(A). ij ij 2) Let Λ = diag (λ1,λ2,...,λn) be an invertible diagonal matrix over F. Then qk(A·Λ) = λ−1 ·qk(A)·λ . ij i ij j 3) If j = k then qk = 0; if j = i then qk = 1 (we always assume i 6= k.) ij ij 4) qk ·qk = qk . In particular, qkqk = 1. ij jℓ iℓ ij ji 5) “Noncommutative skew-symmetry”: For distinct i,j,k qk ·qi ·qj = −1. ij jk ki One can also rewrite this formula as q kqi = −qj . ij jk ik 6) “Noncommutative Plu¨cker identity”: For distinct i,j,k,ℓ qkqℓ +qkqj = 1. ij ji iℓ ℓi One can easily check two last formulas in the commutative case. In fact, p p p qk ·qi ·qj = jk ki ij = −1 ij jk ki p p pkj ik ji because Plu¨cker coordinates are skew-symmetric: p = −p for any i,j. ij ji Also, assuming that i < j < k < ℓ p p p p qkqℓ +qkqj = jk iℓ + ℓk ij. ij ji iℓ ℓi p p p p ik jℓ ik ℓj Because pℓk = pkℓ, the last expression equals to p p ℓj jℓ p p p p p p +p p jk iℓ kℓ ij ij kℓ iℓ jk + = = 1 p p p pjℓ p p ik jℓ ik ik jℓ due to the celebrated Plu¨cker identity p p −p p +p p = 0. ij kℓ ik jℓ iℓ jk Remark 2.3. We presented here a theory of the left quasi-Plu¨cker coordinates for 2 by n matrices where n > 2. A theory of the right quasi-Plu¨cker coordinates for n by 2 or, more generally, for n by k matrices where n > k can be found in [3, 4]. NONCOMMUTATIVE CROSS-RATIOS 3 3. Definition and basic properties of cross-ratios We define cross-ratios over (noncommutative) division ring F by imitating the definition of calssical cross-ratios in homogeneous coordinates, namely, if the four points are represented in homogeneous coordinates by vectors a,b,c,d such that c = a+b and d = ka+b, then their cross-ratio is k. Let x y z t 1 1 1 1 x = , y = , z = , t = x y z t 2 2 2 2 (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) be vectors in F2. We define the cross-ratio κ = κ(x,y,z,t) by equations t = xα+yβ z = xαγ +yβγ ·κ ( where α,β,γ,κ ∈ F. Consider matrix x y z t 1 1 1 1 x y z t 2 2 2 2 (cid:18) (cid:19) and index its columns by x,y,z,t. Theorem 3.1. κ(x,y,z,t) = qy ·qx . zt tz Proof. We assume that coordinates of vectors x,y,z,t are not equal to zero. Equation t = xα+yβ leads to the system t1 = x1α+y1β . (t2 = x2α+y2β The system implies that −1 −1 y1 x1 y1 t1 x1 y1 x1 t1 (3.1) α = , β = y2 x2 y2 t2 x2 y2 x2 t2 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (we treat α,β as unknow(cid:12)ns here.(cid:12)) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Equation z = xαγ +yβγκ leads to the system z1 = x1αγ +y1βγκ . (z2 = x2αγ +y2βγκ The system implies that −1 −1 y x y z x y x z 1 1 1 1 1 1 1 1 (3.2) αγ = , βγκ = . y x y t x y x z 2 2 2 2 2 2 2 2 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Then formulas (3.1),(cid:12)(3.2) im(cid:12)ply(cid:12) that (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) −1 y1 t1 y1 z1 γ = y2 t2 y2 z2 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) and (cid:12) (cid:12) (cid:12) (cid:12) −1(cid:12) (cid:12) (cid:12) (cid:12)−1 κ(x,y,z,t) = y1 z1 y1 t1 · x1 t1 x1 t1 = qy qx . y2 z2 y2 t2 x2 t2 x2 t2 zt tz (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 4 VLADIMIRRETAKH (cid:3) The theorem is proved. Corollary 3.2. Let x,y,z,t be vectors in F, g be a 2 by 2 matrix over F and λ ∈ F, i i = 1,2,3,4. If matrix g and elements λ are invertible then i −1 (3.3) κ(gxλ1,gyλ2,gzλ3,gtλ4) = λ3 κ(x,y,z,t)λ3 . Also, asexpected, inthecommutative casetherighthandsideof(3.3)equalstoκ(x,y,z,t). A proof immediately follows from the properties of quasi-Plu¨cker coordinates. Remark 3.3. Note that the group GL2(F) acts on vectors in F2 by multiplication from the left: (g,x) 7→ gx, and the group F× of invertible elements in F by multiplication from the right: (λ,x) 7→ xλ−1. It defines the action of GL2(F)×T4(F) on P4 = F2 ×F2 ×F2 ×F2 where T4(F) = (F×)4. The cross-ratios are relative invariants of the action. The following theorem generalizes the main property of cross-ratios to the noncommutive case. Theorem 3.4. Let κ(x,y,z,t) be defined and κ(x,y,z,t) 6= 0,1. Then 4-tuples (x,y,z,t) and (x′,y′,z′,t′) from P4 belong to the same orbit of GL2(F)×T4(F) if and only if there exists µ ∈ F× such that ′ ′ ′ ′ −1 (3.4) κ(x,y,z,t) = µ·κ(x,y ,z ,t)·µ . Proof. If(x,y,z,t)and(x′y,z,t′)belongtothesameorbitthensuchµexistsbecauseκ(x,y,z,t) is a relative invariant of the action. Assume now that formula (3.4) is satisfied and that κ = κ(x,y,z,t) 6= 0,1. Note that the matrix g with columns z,t is invertible. Otherwise, there exists α ∈ F such that t = zα. If α = 0 then κ = 0. If α 6= 0 then qx = α and qy = α−1. Then κ = 1 which contradicts the zt tz assumption on κ. The matrix g′ with columns z′,t′ is also invertible. By applying g−1 to matrix with columns x,y,z,t and (g′)−1 to the matrix with columns x′,y′,z,t′ we get matrices a11 a12 1 0 b11 b12 1 0 A = , B = a21 a22 0 1 b21 b22 0 1 (cid:18) (cid:19) (cid:18) (cid:19) where a ,b 6= 0 for i,j = 1,2. Then ij ij −1 −1 a12 1 a12 0 a11 0 a11 1 κ(x,y,z,t) = · . a22 0 a22 1 a21 1 a21 0 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) It implies that (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) −1 −1 −1 −1 −1 κ(x,y,z,t) = 1·(−a12a22)·(−a11a21) ·1 = a12a22a21a11 . Similarly, κ(x′,y,z,t′) = b12b−221b21b−111 and we have −1 −1 −1 −1 −1 (3.5) a12a22a21a11 = µ·b12b22b21b11 ·µ . To finish the proof, it is enough to find invertible elements λ ∈ F, i = 1,2,3,4 such that i −1 −1 −1 −1 A = diag(λ3,λ4)·B ·diag(λ1 ,λ2 ,λ3 ,λ4 ) . It leads to the system a11λ1 = λ3b11, a12λ2 = λ3b12 (a21λ1 = λ4b21, a22λ2 = λ4b22 NONCOMMUTATIVE CROSS-RATIOS 5 Set λ3 = µ. Then −1 −1 −1 −1 −1 λ1 = a11µb11, λ2 = a12µb12, λ4 = a21λ1b21 = a21a11µb11 and the system is consistent if −1 −1 −1 −1 −1 a21a11µb11b21 = a22λ2b22 = a22a12µb12b22 (cid:3) which leads to formula (3.5) and the proof is finished. The following corollary shows that the defined cross-ratios satisfy cocycle conditions (see [5]). Corollary 3.5. For vectors x,y,z,t,w κ(x,y,z,t) = κ(w,y,z,t)κ(x,w,z,t) κ(x,y,z,t) = 1−κ(t,y,z,x) Proof. By definition κ(w,y,z,t)·κ(x,w,z,t) = qy qw ·qwqx = qy qx = κ(x,y,z,t) . zt tz zt tz zt tz (cid:3) the second formula follows directly from the noncommutative Plu¨cker identity. The proposition also implies Corollary 3.6. For vectors x,x ,x ,...x ,z,t ∈ F2 one has 1 2 n κ(x,x,z,t) = 1 and κ(xn−1,xn,z,t)κ(xn−2,xn−1,z,t)...κ(x1,x2,z,t) = κ(x1,xn,z,t) Proof. Note that κ(x,x,z,t) = qxqx = 1 zt tz and κ(xn−1,xn,z,t)κ(xn−2,xn−1,z,t)...κ(x1,x2,z,t) = = qzxtnqtxzn−1qzxtn−1qtxzn−2...qzxt2qtxz1 = qzxtnqtxz1 = κ(x1,xn,z,t) . (cid:3) . 4. Noncommutative cross-ratios and permutations Thereare24cross-ratiosdefinedforvectorsx,y,z,t ∈ F2. Theyarerelatedbythefollowing formulas: Proposition 4.1. Let x,y,z,t ∈ F. Then (4.1) qxκ(x,y,z,t)qx = qy κ(x,y,z,t)qy = κ(y,x,t,z); tz zt tz zt (4.2) qy κ(x,y,z,t)qy = qt κ(x,y,z,t)qt = κ(z,t,x,y); xz zx xz zx (4.3) qx κ(x,y,z,t)qx = qt κ(x,y,z,t)qt = κ(t,z,x,y); yz zy yz zy −1 (4.4) κ(x,y,z,t) = κ(y,x,z,t). 6 VLADIMIRRETAKH Noteagaintheeffectofconjugationinthenoncommutativecasesinceqk andqk areinverses ij ji to each other. Proof. For (4.1) one has qxκ(x,y,z,t)qx = qx ·qy qx ·qx = qxqy = κ(y,x,t,z). tz zt tz zt tz zt tz zt The second part of the formula can be proved in a similar way. For (4.4) κ(x,y,z,t)−1 = (qy ·qx)−1 = qx ·qx = κ(y,x,z,t). zt tz zt tz For (4.2) qy κ(x,y,z,t)qy = qy ·qy qx ·qy = qy qxqy = tz zt xz zt tz zx xt tz zx = qy (−qz qt )qy = −qy qz ·qt qy = xt tx xz zx xt tx xz zx = −(1−qy qt )qt qy = −qt qy +1 = qt qz = κ(z,t,x,y) . xz zx xz zx xz zx xy yx Also, qt κ(x,y,z,t)qt = qt ·qy qx ·qt = qt qy (−qz ) = xz zx xz zt tz zx xz zt tx −qt (qy qy )qz = −qt qy (1−qy qt ) = xz zx xt tx xz zx xz zx = −qt qy +1 = qt qt = κ(z,t,x,y) . xz zx xy yx (cid:3) One can also prove (4.3) in a similar way. By using Proposition 4.1 and the cocycle condition one can get all 24 formulas for cross- ratios of x,y,z,t. References [1] I.Gelfand,V.Retakh,Determinantsofmatricesovernoncommutativerings,Funct.Anal.Appl.25(1991), no. 2, pp. 91–102. [2] I. Gelfand, V. Retakh, A theory of noncommutative determinants and characteristic functions of graphs, Funct. Anal. Appl. 26 (1992), no. 4, pp. 1–20. [3] I. Gelfand, V. Retakh, Quasideterminants, I, Selecta Math. 3 (1997), no. 4, pp. 517–546. [4] I. Gelfand, S. Gelfand, V. Retakh, R. Wilson, Quasideterminants, Advances in Math., 193 (2005), no 1, pp. 56–141. [5] F. Labourie, What is a Cross Ratio, Notices of the AMS, 55 (2008), no. 10, pp.1234–1235. [6] F. Labourie, G. McShane, Cross ratios and identities for higher Teichmller-Thurston theory, Duke Math. J., 149 (2009), no. 2, pp. 209–410. [7] F. Luo, Volume optimization, normal surface and Thurston equation, J. Differential Geom., 93 (2013), no. 2, pp. 175–353. [8] F. Luo, Solving Thurston equation in a commutative ring, arXiv: 1201.2228(2012) E-mail address: [email protected] Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854, USA

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.