NONCOMMUTATIVE CROSS-RATIOS VLADIMIR RETAKH 4 1 0 1. Introduction 2 b The goal of this note is to present a definition and to discuss basic properties of cross- e ratios over (noncommutative) division rings or skew-fields. We present the noncommutative F cross-ratios as products of quasi-Plu¨cker coordinates introduced in [3] (see also [4]). Actually, 7 noncommutative cross-ratios were already mentioned in a remark in [3]. I decided to return 1 to the subject after my colleague Feng Luo explained to me the importance of cross-ratios in ] modern geometry (see, for example, [6, 7, 8]). A I have to thank Feng Luo for valuable discussions. This work was partially supported by R Simons Collaborative Grant. . h t a 2. Quasi-Plu¨cker coordinates m We recall here only the theory of quasi-Plu¨cker coordinates for 2 × n-matrices over a [ noncommutative division ring F. For general k×n-matrices the theory is presented in [3, 4]. 2 a a v Recall (see [1, 2] and subsequent papers) that for a matrix 1k 1i one can define four 0 a a 2k 2i 7 (cid:18) (cid:19) quasideterminants provided the corresponding elements are invertible: 7 5 a a a a 1. a1k a1i = a1k −a1ia−2i1a2k, a1k a1i = a1i −a1ka−2k1a2i, 0 (cid:12) 2k 2i(cid:12) (cid:12) 2k 2i (cid:12) 14 (cid:12)(cid:12)(cid:12) aa1k aa1i(cid:12)(cid:12)(cid:12) = a2k −a2ia−1i1a1k, (cid:12)(cid:12)(cid:12)aa1k aa1i (cid:12)(cid:12)(cid:12) = a2i −a2ka−1k1a1i. : 2k 2i 2k 2i v (cid:12) (cid:12) (cid:12) (cid:12) i a (cid:12) a ...(cid:12) a (cid:12) (cid:12) X Let A = 11(cid:12) 12 (cid:12) 1n be a matrix ov(cid:12)er F. (cid:12) a (cid:12) a ...(cid:12) a (cid:12) (cid:12) r (cid:18) 21 22 2n(cid:19) a Lemma 2.1. Let i 6= k. Then −1 −1 −1 a1k a1i a1k a1j a1k a1i a1k a1j = (cid:12)a2k a2i (cid:12) (cid:12)a2k a2j (cid:12) (cid:12)a2k a2i (cid:12) (cid:12)a2k a2j (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) if the corresponding expressions are defined. (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Note that in the formula the boxed elements on the left and on the right must be on the same level. Definition 2.2. We call the expressions −1 −1 −1 qk(A) = a1k a1i a1k a1j = a1k a1i a1k a1j ij (cid:12)a2k a2i (cid:12) (cid:12)a2k a2j (cid:12) (cid:12)a2k a2i (cid:12) (cid:12)a2k a2j (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) the quasi-Plu¨cker coordi(cid:12)nates of m(cid:12)atr(cid:12)ix A. (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Key words and phrases. cross-ratio,quasideterminant, quasi-Plu¨cker coordinate. 1 2 VLADIMIRRETAKH Our terminology is justified by the following observation. Recall that in the commutative case the expressions a a pik(A) = a1i a1k = a1ia2k −a1ka2i 2i 2k (cid:12) (cid:12) are the Plu¨cker coordinates of A. One(cid:12) can see(cid:12)that in the commutative case (cid:12) (cid:12) (cid:12) (cid:12) p (A) qk(A) = jk , ij p (A) ik i.e. quasi-Plu¨cker coordinates are ratios of Plu¨cker coordinates. Let us list properties of quasi-Plu¨cker coordinates over (noncommutative) division ring F. We sometimes write qk instead of qk(A) where it cannot lead to a confusion. ij ij 1). Let g be an invertible matrix over F. Then qk(g ·A) = qk(A). ij ij 2) Let Λ = diag (λ1,λ2,...,λn) be an invertible diagonal matrix over F. Then qk(A·Λ) = λ−1 ·qk(A)·λ . ij i ij j 3) If j = k then qk = 0; if j = i then qk = 1 (we always assume i 6= k.) ij ij 4) qk ·qk = qk . In particular, qkqk = 1. ij jℓ iℓ ij ji 5) “Noncommutative skew-symmetry”: For distinct i,j,k qk ·qi ·qj = −1. ij jk ki One can also rewrite this formula as q kqi = −qj . ij jk ik 6) “Noncommutative Plu¨cker identity”: For distinct i,j,k,ℓ qkqℓ +qkqj = 1. ij ji iℓ ℓi One can easily check two last formulas in the commutative case. In fact, p p p qk ·qi ·qj = jk ki ij = −1 ij jk ki p p pkj ik ji because Plu¨cker coordinates are skew-symmetric: p = −p for any i,j. ij ji Also, assuming that i < j < k < ℓ p p p p qkqℓ +qkqj = jk iℓ + ℓk ij. ij ji iℓ ℓi p p p p ik jℓ ik ℓj Because pℓk = pkℓ, the last expression equals to p p ℓj jℓ p p p p p p +p p jk iℓ kℓ ij ij kℓ iℓ jk + = = 1 p p p pjℓ p p ik jℓ ik ik jℓ due to the celebrated Plu¨cker identity p p −p p +p p = 0. ij kℓ ik jℓ iℓ jk Remark 2.3. We presented here a theory of the left quasi-Plu¨cker coordinates for 2 by n matrices where n > 2. A theory of the right quasi-Plu¨cker coordinates for n by 2 or, more generally, for n by k matrices where n > k can be found in [3, 4]. NONCOMMUTATIVE CROSS-RATIOS 3 3. Definition and basic properties of cross-ratios We define cross-ratios over (noncommutative) division ring F by imitating the definition of calssical cross-ratios in homogeneous coordinates, namely, if the four points are represented in homogeneous coordinates by vectors a,b,c,d such that c = a+b and d = ka+b, then their cross-ratio is k. Let x y z t 1 1 1 1 x = , y = , z = , t = x y z t 2 2 2 2 (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) be vectors in F2. We define the cross-ratio κ = κ(x,y,z,t) by equations t = xα+yβ z = xαγ +yβγ ·κ ( where α,β,γ,κ ∈ F. Consider matrix x y z t 1 1 1 1 x y z t 2 2 2 2 (cid:18) (cid:19) and index its columns by x,y,z,t. Theorem 3.1. κ(x,y,z,t) = qy ·qx . zt tz Proof. We assume that coordinates of vectors x,y,z,t are not equal to zero. Equation t = xα+yβ leads to the system t1 = x1α+y1β . (t2 = x2α+y2β The system implies that −1 −1 y1 x1 y1 t1 x1 y1 x1 t1 (3.1) α = , β = y2 x2 y2 t2 x2 y2 x2 t2 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (we treat α,β as unknow(cid:12)ns here.(cid:12)) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Equation z = xαγ +yβγκ leads to the system z1 = x1αγ +y1βγκ . (z2 = x2αγ +y2βγκ The system implies that −1 −1 y x y z x y x z 1 1 1 1 1 1 1 1 (3.2) αγ = , βγκ = . y x y t x y x z 2 2 2 2 2 2 2 2 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Then formulas (3.1),(cid:12)(3.2) im(cid:12)ply(cid:12) that (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) −1 y1 t1 y1 z1 γ = y2 t2 y2 z2 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) and (cid:12) (cid:12) (cid:12) (cid:12) −1(cid:12) (cid:12) (cid:12) (cid:12)−1 κ(x,y,z,t) = y1 z1 y1 t1 · x1 t1 x1 t1 = qy qx . y2 z2 y2 t2 x2 t2 x2 t2 zt tz (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 4 VLADIMIRRETAKH (cid:3) The theorem is proved. Corollary 3.2. Let x,y,z,t be vectors in F, g be a 2 by 2 matrix over F and λ ∈ F, i i = 1,2,3,4. If matrix g and elements λ are invertible then i −1 (3.3) κ(gxλ1,gyλ2,gzλ3,gtλ4) = λ3 κ(x,y,z,t)λ3 . Also, asexpected, inthecommutative casetherighthandsideof(3.3)equalstoκ(x,y,z,t). A proof immediately follows from the properties of quasi-Plu¨cker coordinates. Remark 3.3. Note that the group GL2(F) acts on vectors in F2 by multiplication from the left: (g,x) 7→ gx, and the group F× of invertible elements in F by multiplication from the right: (λ,x) 7→ xλ−1. It defines the action of GL2(F)×T4(F) on P4 = F2 ×F2 ×F2 ×F2 where T4(F) = (F×)4. The cross-ratios are relative invariants of the action. The following theorem generalizes the main property of cross-ratios to the noncommutive case. Theorem 3.4. Let κ(x,y,z,t) be defined and κ(x,y,z,t) 6= 0,1. Then 4-tuples (x,y,z,t) and (x′,y′,z′,t′) from P4 belong to the same orbit of GL2(F)×T4(F) if and only if there exists µ ∈ F× such that ′ ′ ′ ′ −1 (3.4) κ(x,y,z,t) = µ·κ(x,y ,z ,t)·µ . Proof. If(x,y,z,t)and(x′y,z,t′)belongtothesameorbitthensuchµexistsbecauseκ(x,y,z,t) is a relative invariant of the action. Assume now that formula (3.4) is satisfied and that κ = κ(x,y,z,t) 6= 0,1. Note that the matrix g with columns z,t is invertible. Otherwise, there exists α ∈ F such that t = zα. If α = 0 then κ = 0. If α 6= 0 then qx = α and qy = α−1. Then κ = 1 which contradicts the zt tz assumption on κ. The matrix g′ with columns z′,t′ is also invertible. By applying g−1 to matrix with columns x,y,z,t and (g′)−1 to the matrix with columns x′,y′,z,t′ we get matrices a11 a12 1 0 b11 b12 1 0 A = , B = a21 a22 0 1 b21 b22 0 1 (cid:18) (cid:19) (cid:18) (cid:19) where a ,b 6= 0 for i,j = 1,2. Then ij ij −1 −1 a12 1 a12 0 a11 0 a11 1 κ(x,y,z,t) = · . a22 0 a22 1 a21 1 a21 0 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) It implies that (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) −1 −1 −1 −1 −1 κ(x,y,z,t) = 1·(−a12a22)·(−a11a21) ·1 = a12a22a21a11 . Similarly, κ(x′,y,z,t′) = b12b−221b21b−111 and we have −1 −1 −1 −1 −1 (3.5) a12a22a21a11 = µ·b12b22b21b11 ·µ . To finish the proof, it is enough to find invertible elements λ ∈ F, i = 1,2,3,4 such that i −1 −1 −1 −1 A = diag(λ3,λ4)·B ·diag(λ1 ,λ2 ,λ3 ,λ4 ) . It leads to the system a11λ1 = λ3b11, a12λ2 = λ3b12 (a21λ1 = λ4b21, a22λ2 = λ4b22 NONCOMMUTATIVE CROSS-RATIOS 5 Set λ3 = µ. Then −1 −1 −1 −1 −1 λ1 = a11µb11, λ2 = a12µb12, λ4 = a21λ1b21 = a21a11µb11 and the system is consistent if −1 −1 −1 −1 −1 a21a11µb11b21 = a22λ2b22 = a22a12µb12b22 (cid:3) which leads to formula (3.5) and the proof is finished. The following corollary shows that the defined cross-ratios satisfy cocycle conditions (see [5]). Corollary 3.5. For vectors x,y,z,t,w κ(x,y,z,t) = κ(w,y,z,t)κ(x,w,z,t) κ(x,y,z,t) = 1−κ(t,y,z,x) Proof. By definition κ(w,y,z,t)·κ(x,w,z,t) = qy qw ·qwqx = qy qx = κ(x,y,z,t) . zt tz zt tz zt tz (cid:3) the second formula follows directly from the noncommutative Plu¨cker identity. The proposition also implies Corollary 3.6. For vectors x,x ,x ,...x ,z,t ∈ F2 one has 1 2 n κ(x,x,z,t) = 1 and κ(xn−1,xn,z,t)κ(xn−2,xn−1,z,t)...κ(x1,x2,z,t) = κ(x1,xn,z,t) Proof. Note that κ(x,x,z,t) = qxqx = 1 zt tz and κ(xn−1,xn,z,t)κ(xn−2,xn−1,z,t)...κ(x1,x2,z,t) = = qzxtnqtxzn−1qzxtn−1qtxzn−2...qzxt2qtxz1 = qzxtnqtxz1 = κ(x1,xn,z,t) . (cid:3) . 4. Noncommutative cross-ratios and permutations Thereare24cross-ratiosdefinedforvectorsx,y,z,t ∈ F2. Theyarerelatedbythefollowing formulas: Proposition 4.1. Let x,y,z,t ∈ F. Then (4.1) qxκ(x,y,z,t)qx = qy κ(x,y,z,t)qy = κ(y,x,t,z); tz zt tz zt (4.2) qy κ(x,y,z,t)qy = qt κ(x,y,z,t)qt = κ(z,t,x,y); xz zx xz zx (4.3) qx κ(x,y,z,t)qx = qt κ(x,y,z,t)qt = κ(t,z,x,y); yz zy yz zy −1 (4.4) κ(x,y,z,t) = κ(y,x,z,t). 6 VLADIMIRRETAKH Noteagaintheeffectofconjugationinthenoncommutativecasesinceqk andqk areinverses ij ji to each other. Proof. For (4.1) one has qxκ(x,y,z,t)qx = qx ·qy qx ·qx = qxqy = κ(y,x,t,z). tz zt tz zt tz zt tz zt The second part of the formula can be proved in a similar way. For (4.4) κ(x,y,z,t)−1 = (qy ·qx)−1 = qx ·qx = κ(y,x,z,t). zt tz zt tz For (4.2) qy κ(x,y,z,t)qy = qy ·qy qx ·qy = qy qxqy = tz zt xz zt tz zx xt tz zx = qy (−qz qt )qy = −qy qz ·qt qy = xt tx xz zx xt tx xz zx = −(1−qy qt )qt qy = −qt qy +1 = qt qz = κ(z,t,x,y) . xz zx xz zx xz zx xy yx Also, qt κ(x,y,z,t)qt = qt ·qy qx ·qt = qt qy (−qz ) = xz zx xz zt tz zx xz zt tx −qt (qy qy )qz = −qt qy (1−qy qt ) = xz zx xt tx xz zx xz zx = −qt qy +1 = qt qt = κ(z,t,x,y) . xz zx xy yx (cid:3) One can also prove (4.3) in a similar way. By using Proposition 4.1 and the cocycle condition one can get all 24 formulas for cross- ratios of x,y,z,t. References [1] I.Gelfand,V.Retakh,Determinantsofmatricesovernoncommutativerings,Funct.Anal.Appl.25(1991), no. 2, pp. 91–102. [2] I. Gelfand, V. Retakh, A theory of noncommutative determinants and characteristic functions of graphs, Funct. Anal. Appl. 26 (1992), no. 4, pp. 1–20. [3] I. Gelfand, V. Retakh, Quasideterminants, I, Selecta Math. 3 (1997), no. 4, pp. 517–546. [4] I. Gelfand, S. Gelfand, V. Retakh, R. Wilson, Quasideterminants, Advances in Math., 193 (2005), no 1, pp. 56–141. [5] F. Labourie, What is a Cross Ratio, Notices of the AMS, 55 (2008), no. 10, pp.1234–1235. [6] F. Labourie, G. McShane, Cross ratios and identities for higher Teichmller-Thurston theory, Duke Math. J., 149 (2009), no. 2, pp. 209–410. [7] F. Luo, Volume optimization, normal surface and Thurston equation, J. Differential Geom., 93 (2013), no. 2, pp. 175–353. [8] F. Luo, Solving Thurston equation in a commutative ring, arXiv: 1201.2228(2012) E-mail address: [email protected] Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854, USA