ebook img

Non-zero degree maps between closed orientable three-manifolds PDF

0.31 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Non-zero degree maps between closed orientable three-manifolds

NON-ZERO DEGREE MAPS BETWEEN CLOSED ORIENTABLE THREE-MANIFOLDS 5 0 0 PIERREDERBEZ 2 n a J ABSTRACT. Thispaperadressesthefollowingproblem:Givenaclosedorientablethree- 9 manifoldM,arethereatmostfinitelymanyclosedorientablethree-manifolds1-dominated byM? Wesolvethisquestionfortheclassofclosedorientablegraphmanifolds. More ] T presiselythemainresultofthispaperassertsthatanyclosedorientablegraphmanifold1- dominatesatmostfinitelymanyorientableclosedthree-manifoldssatisfyingthePoincare´- G ThurstonGeometrizationConjecture.Toprovethisresultwestateamoregeneraltheorem . forHakenmanifoldswhichsaysthatanyclosedorientablethree-manifoldM1-dominates h atmostfinitelymanyHakenmanifolds whoseGromovsimplicial volumeissufficiently t a closetothatofM. m [ 1. INTRODUCTION 1 1.1. Statement of the general problem. We deal here with non-zero degree maps be- v tween closed orientable 3-manifolds. Recall that a 3-manifold is termed geometric if it 4 2 admitsoneoftheeightuniformgeometriesclassifiedbyW.P.Thurston. DenotebyG the 1 setofclosedgeometricandHakenmanifoldsuniontheconnectedsumsofsuchmanifolds. 1 Note that the Poincare´-ThurstonGeometrization Conjecture asserts that G represents all 0 closedorientable3-manifolds.Thusa3-manifoldofGwillbetermedaPoincare´-Thurston 5 3-manifold. Accordingto[BW], giventwo closedorientable3-manifoldsM, N, we say 0 / thatM d-dominatesN (M ≥(d) N) if there is a map f: M → N of degreed 6= 0. A h motivationforstudyingnonzerodegreemapscomesfromtheobservationthattheyseem t a to give a way to measure the topologicalcomplexity of 3-manifoldsand of knots in S3. m ForinstanceY.Rongprovedin[Ro2]thatdegreeonemapsdefineapartialorderontheset : G,uptohomotopyequivalence. Inthesamewayonecandefineapartialorderontheset v KofknotsinS3,uptoknotsequivalence.GiventwoknotsK andK′inKwesaythatK i X 1-dominatesK′ ifthecomplementEK ofK properly1-dominatesEK′. Thenitfollows r from[Wa]combinedwiththefactthatknotsinS3aredeterminedbytheircomplement,see a [GL],that(K,≥ )isapartiallyorderedset(aposet). Thispaperadressesthefollowing (1) questionwhichiscloselyrelatedtothepartialorderinducedbydegreeonemaps(seealso Kirby’sProblemList[K,Problem3.100]): Question 1. Given a closed orientable 3-manifoldM, are there at most finitely many3- manifoldsN inG (uptohomeomorphism)1-dominatedbyM? Notethatinthisquestionthetargetsare3-manifoldsofGbecauseofthePoincare´Con- jecture. Indeed if there is a fake 3-sphere K then one can get infinitely many reducible homotopy 3-spheres by doing connected sums of finitely many copies of K and since 1991MathematicsSubjectClassification. 57M50,51H20. Keywordsandphrases. Hakenmanifold,Seifertfiberedspace,geometric3-manifold,graphmanifold,Gro- movsimplicialvolume,non-zerodegreemaps,Dehnfilling. 1 2 PIERREDERBEZ therealwaysexistsadegreeonemapfroma closedorientable3-manifoldM toa homo- topy3-spherewehavetoexcludethiskindof3-manifolds.Ontheotherhand,inQuestion 1,weconsideralwaysdegreeonemapstoavoidsomeeasycounterexamples.Forinstance foranysphericalLensspaceL(p,q)therealwaysexistsanonzerodegreemap(actuallya finitecovering)fromthe3-sphereS3toL(p,q). 1.2. Themainresult. InthispaperwesolveQuestion1whenthedomainM isaclosed orientablegraphmanifold.Morepreciselyourmainresultstatesasfollows. Theorem 1.1. Any closed orientable graph manifold 1-dominates at most finitely many closedorientablePoincare´-Thurston3-manifolds. This result comes from a more generaltheorem which gives an affirmative answer to Question1whenthetargetsareclosedHakenmanifoldswhoseGromovsimplicialvolume, denotedbyVol(.),issufficientlyclosetothatofthedomainM. Moreprecisely: Theorem1.2. Foranyclosedorientable3-manifoldM thereexistsaconstantc ∈(0,1), whichdependsonlyonM, suchthatM 1-dominatesatmostfinitelymanyclosedHaken manifoldsN satisfyingVol(N)≥(1−c)Vol(M). Recall that there are many important results related to Question 1 obtained when the targetsarerestricted. Morepreciselytheknownanswerscanbesummurizedasfollows. Theorem 1.3 ([H-LWZ],[S2],[WZ],[Re],[Ro1]). Any closed orientable 3-manifold 1- dominatesatmostfinitelymanyorientableclosedgeometric3-manifolds. Noticethatinsomecasesthedegreeofthemapsneednottobebounded. Thisistrue inparticularwhenthetargetsadmita hyperbolicoran H2 ×R-structure. Thusa useful consequenceoftheproofTheorem1.3isthefollowingresult. Corollary 1.4 ([S2],[WZ]). Any orientable 3-manifold M properly dominates at most finitelymanyclosedorientablegeometric3-manifoldswithnon-emptyboundary. ThenthefollowingstepistostudyQuestion1whenthetargetsareHakenmanifolds(a Hakenmanifoldisnotgeometricingeneralbutitadmitsadecompositionintogeometric 3-manifolds).ThisisthepurposeofTheorem1.2. We end thissection by givingan interpretationof Theorem1.1for the subclassG of 0 G which consists of graph manifolds. The purpose of this remark is to study the local finitenessof the poset(G ,≥ ), upto homotopyequivalence. Recall thata poset(P,≥) 0 1 islocallyfiniteifforanyx,y inP withx ≤ y theinterval[x,y] = {z ∈ P,x ≤ z ≤ y} is finite (many results on posets require this condition). Then Theorem 1.1 implies the following Corollary 1.5. The poset of closed orientable graph manifolds partially ordered, up to homotopyequivalence,bydegreeonemapsislocallyfinite. 2. NOTATION AND TERMINOLOGY 2.1. Thedegreeofamap. Letf: M → N beamapbetweenorientablecompactcon- nected n-manifolds. We say that f is properif f−1(∂N) = ∂M. Suppose f is proper. Then f induces homomorphismsf : π M → π N, f : H (M,∂M) → H (N,∂N), ∗ 1 1 ♯ ∗ ∗ f♯: H∗(N;R) → H∗(M;R). The degree of f, deg(f), is given by the equation f ([M]) = deg(f)[N], where [M] ∈ H (M,∂M;Z), [N] ∈ H (N,∂N;Z) are the ♯ n n chosenfundamentalclassesof M andN. Onthe otherhandthe Gromovsimplicialvol- umeVol(M)ofthepair(M,∂M)istheinfimumofthel1-norms k |λ |ofallcycles Pj=1 j 3 z = k λ σ , with σ : ∆n → M singularn-simplexesofM, λ ∈ R, representing thefuPndja=m1enjtaljclass[Mj]∈H (M,∂M;Z)(see[G,Sect. 1.1]).Wejrecallthefollowing n wellknownandusefulresultonnonzerodegreemaps. Proposition2.1. Supposef: M →N isapropernonzerodegreemapbetweencompact orientable3-manifolds.Thenthefollowingpropertieshold: (i)theindexoff (π M)inπ N dividesdeg(f), ∗ 1 1 (ii) the induced homomorphism f : H (M,∂M;R) → H (N,∂N;R) is surjective ♯ ∗ ∗ andbydualityf♯: H∗(N;R)→H∗(M;R)isamonomorphism, (iii)Vol(M)≥deg(f)Vol(N). Sketchofproof. Point(i)comesdirectlyfromacoveringspaceargumentasintheproofof Lemma15.12in[He]. Point(ii)comesfromthePoincare´Dualitycombinedwiththenat- uralityofcapproducts.Point(iii)canbeobtaineddirectlyusingthedefinitionofGromov simplicialvolumecombinedwiththedefinitionofthedegreeofamapgiveninparagraph 2.1. (cid:3) 2.2. Haken manifolds and sewing involutions. An orientable compact irreducible 3- manifoldiscalledaHakenmanifoldifitcontainsanorientableproperincompressiblesur- face.GivenaclosedHakenmanifoldN wedenotebyT theJaco-Shalen-Johannsonfam- N ilyofcanonicaltoriofN andbyH(N)(resp. S(N))thedisjointunionofthehyperbolic (resp.Seifert)componentsofN\T ×[−1,1]sothatN\T ×[−1,1]=H(N)∪S(N), N N where T ×[−1,1] is identified with a regular neighborhoodof T in such a way that N N T ≃ T ×{0} (see [JS], [J] and [T2] for the statement and the proof of this decom- N N position). On the other hand, we denote by Σ(N) the disjoint union of S(N) with the componentsofT ×[−1,1]. N Let N be a Haken manifold. Consider the 3-manifold N∗ obtained after splitting N alongT . Thereisaninvolutions: ∂N∗ → ∂N∗ definedasfollows. Letr: N∗ → N N be the canonicalidentification map. For any componentT of ∂N∗ we denoteby T′ the uniquecomponentof∂N∗ distinctofT suchthatr(T′)= r(T). Lets : T →T′ bethe T uniquehomeomorphismsuchthat(r|T′)◦s = r|T. Define s bysettings|T = s for T T anyT ∈∂N∗. ThemapswillbetermedthesewinginvolutionforN. ConsidernowtwoHakenmanifoldsN andN withsewinginvolutionss ands . We 1 2 1 2 say that the two orderedpairs (N∗,s ),(N∗,s ) are equivalent if there is a homeomor- 1 1 2 2 phism η: N∗ → N∗ such that η ◦s and s ◦η are isotopic. Using this notation then 1 2 1 2 twoHakenmanifoldsN andN arehomeomorphicif andonlyif the twoorderedpairs 1 2 (N∗,s ) and (N∗,s ) are equivalent. On the other hand we will say, for convenience, 1 1 2 2 thattwoHakenmanifoldsN andN areweaklyequivalentifthereisahomeomorphism 1 2 η: N∗ →N∗. 1 2 2.3. Hakenmanifolds, graphmanifolds andsimplicial volume. Recall thatit follows from[T1]thatifH isacompletefinitevolumehyperbolicmanifoldthen Vol (H) int Vol(H)= v 3 where Vol (H) is the volume associated to the complete hyperbolic metric in int(H) int andv is a constantwhichdependsonlyonthe dimension. On the otherhanditfollows 3 from[G] thatVol(S) = 0 whenS is a Seifertfiberedspace. Thenusingthe Cutting off TheoremofM.Gromov([G])weget Vol(N)= Vol(H) X H∈H(N) 4 PIERREDERBEZ A3-manifoldGistermedagraphmanifoldifthereisacollectionT ofdisjointembedded toriinGsuchthateachcomponentofG\T isSeifert. NotethattheGromovsimplicial volumegivesacharacterizationofgraphmanifoldsinthefollowingway: Theorem2.2([S4]). Aclosedorientable3-manifoldN isagraphmanifoldifandonlyif N isanelementofG withzeroGromovsimplicialvolume. We end this section with the following convenient definition. Given a closed Haken manifoldN, azerocodimensionalsubmanifoldGofN whichistheunionofsomegeo- metric(resp.Seifert)componentsofN willbetermeda canonical(resp.graph)subman- ifoldof N. 3. MAIN STEPSOF THEPROOF OF THEOREM1.2ANDSTATEMENTOF THE INTERMEDIATERESULTS Let M be a closed orientable 3-manifold and let N be a closed Haken manifold 1- dominatedby M. First note that we may assume, throughoutthe proofof Theorem1.2, thatthetargetsatisfiesthefollowingcondition: (I)N isaclosednon-geometricHakenmanifold. ThisconditioncomesfromTheorem1.3. Ontheotherhandtheconstantc ∈ (0,1)of Theorem1.2isgivenbyaresultofT.Somain[S3,Theorem1]whichimpliesthefollowing Theorem 3.1 ([S3]). Let M be a closed orientable 3-manifold. There exists a constant c ∈ (0,1), which dependsonlyon M, satisfying the followingproperty. Iff: M → N denotes a nonzero degree map to a closed Haken manifold N whose Gromov simplicial volumesatisfiesVol(N)≥(1−c)Vol(M)thenVol(M)=deg(f)Vol(N). This, inordertostateTheorem1.2wewillprovethefollowinggeneralresultonnon- geometricclosedHakenmanifolds. Proposition3.2. Let M be a closed orientable 3-manifold and let d be striclty positive integer. Then there are at most finitely many closed non-geometric Haken manifolds N suchthatthereexistsadegree-dmapf: M →N satisfyingVol(M)=deg(f)Vol(N). The proof of Proposition 3.2 contains two steps. In the first one, we show that there areatmostfinitelymanyhomeomorphismclasses forN∗ (whenN runsoverthe targets manifolds)andinthesecondone,weprovethatthereareatmostfinitelymanyequivalence classesofpairs(N∗,s)wheres isthesewingmapwhichproducesthetargetN fromits geometricdecompositionN∗. Wegivenowthekeyresultsofthistwosteps. 3.1. First step: Controlofthe geometricdecompositionofthe targets. Accordingto theparagraphabove,thepurposeofthisstepistoprovethefollowingresult: Proposition3.3. LetM beaclosedorientable3-manifoldandletdbeastrictlypositive integer. Thenthere are atmostfinitelymanyclasses ofweakly equivalentnon-geometric closed Haken manifold N such that there exists a degree-dmap f: M → N satisfying Vol(M)=deg(f)Vol(N). The proof of Proposition 3.3 depends on the following key result which says that a nonzerodegree map f into a Haken manifold N has a kind of canonicalstandard form withrespecttothegeometricdecompostionofN. Lemma 3.4 (Standard Form). Any closed orientable 3-manifold M admits a finite set H = {M ,...,M }ofclosedHakenmanifoldssatisfyingthefollowingproperty. Forany 1 k 5 nonzero degree map g: M → N into a closed non-geometric Haken manifold N con- tainingnoembeddedKleinbottlesandsatisfyingVol(M)=deg(g)Vol(N)thereexistsat leastoneelementM inHandanonzerodegreemapf: M →N suchthat: i i (i)Vol(M )=deg(f)Vol(N),and i (ii)f inducesafinitecoveringbetweenH(M )andH(N),and i (iii) forany geometric componentQ in N∗ the preimage f−1(Q) is a canonicalsub- manifoldofM. Remark 3.5. It will follow from the proof of Lemma 3.4 that if Q is a Seifert piece of N then f−1(Q) is a graph submanifold of M and if Q is a hyperbolicpiece then each i geometriccomponentoff−1(Q)isahyperbolicpieceofM . i Recallthatin[S3,KeyLemma],T.Somaprovesthefollowingresultforcompletefinite volumehyperbolic3-manifoldswithoutanyconditionontheGromovsimplicialvolume: Lemma 3.6 (T. Soma). Any closed orientable 3-manifold M admits a finite set F = {F ,...,F }of3-manifoldssuchthatforanyclosedHakenmanifoldN dominatedbyM 1 n thenanycomponentH ofH(N)isproperlydominatedbyatleastoneelementF ofF. i SinceaclosedHakenmanifoldcontainsatmostfinitelymanycanonicalsubmanifolds thenpoint(iii)ofLemma3.4givesaversionofLemma3.6forSeifertfiberedmanifolds withanadditionalconditionontheGromovsimplicialvolume.Firstofall,notethatinthe proofofLemma3.4aswellasintheproofofLemma3.6, itcanbeshownthatthereare nolossofgeneralityassumingthatM isaclosedHakenmanifold. Withthisassumption, recall that the proof of Soma of Lemma 3.6 uses the geometry of the hyperbolic space andinparticulartheisotropyofhyperbolicgeometryiscrucialfor“locallyhyperbolizing” certainsimplicialsubcomplexesofM. ThismethodcannotbeadaptedintheSeifertcase sincethegeometryisnotisotropic(indeedthereisaninvariantdirectioncorrespondingto theSeifertfibration). In the proof of Lemma 3.4 the condition on the Gromov simplicial volume is essen- tial. More precisely the proof of Lemma 3.4 is based on the observation that when Vol(M) = deg(f)Vol(N) then we can “control” the “essential part” of f−1(T ). Ac- N tuallyonecanshow, uptohomotopy,thatthisessentialpartisa subfamilyof T which M is crucial in our proof since this ensures that the genus of the essential components of f−1(T ) is bounded independently of N. This control can not be accomplished when N Vol(M) >> deg(f)Vol(N). Indeed, consider for example a degree one map from a closedhyperbolic3-manifoldM toagraphmanifoldN (thiskindofexamplecanbebuilt bytakingahyperbolicnul-homotopicknotkinagraphmanifoldN andbygluingasolid torusalong∂(N \k)insuchawaythattheresultingmanifoldM ishyperbolic,thenthe degreeofthecanonicaldecompositionmapf : M → N isone,see[BW]fordetailson thisconstruction). Inthiscaseonecanclearlynotcontrolthegenusofthecomponentsof f−1(T ). N ThefamilyHofHakenmanifoldsinLemma3.4comesfromafinitefamilyofcanonical submanifolds A of M after some Dehn fillings. Note that to get a family Aˆ of Haken manifoldswhoseelementssatisfiesconditions(i),(ii)and(iii)onecanuseaconstruction of Rong in [Ro2]. But this construction does not guarantee the finiteness of the family Aˆ (actually the construction of Rong does not allow to control the slopes of the Dehn fillings performed along the components of A to obtain Aˆ). Thus we have to modify thisconstructionto avoid thisproblem. To this purposewe will define andconstructthe maximalessentialpartofM (seeSection5.3). 6 PIERREDERBEZ 3.2. Second step: Control of the sewing involutions of the targets. In this step we completetheproofofProposition3.2. Thusthekeyresultofthissectionstatesasfollows. Proposition3.7. LetM beaclosedorientable3-manifoldandletdbeastrictlypositive integer.LetN beasequenceofweaklyequivalentnon-geometricclosedHakenmanifolds i suchthatthereexistsadegree-dmapg : M →N satisfyingVol(M)=deg(g )Vol(N ). i i i i Foreachi ∈ N,we denotebys : ∂N∗ → ∂N∗ thesewinginvolutioncorrespondingto i i i N . Thenthesequence{(N∗,s ),i∈N}isfinite,uptoequivalenceofpairs. i i i Throughout the proof of Proposition 3.7 we will use the collection of closed Haken manifolds H given by Lemma 3.4. Points (i), (ii) and (iii) say that the elements of H dominatethemanifoldsN ’sinaconvenientway.Roughlyspeaking,thecoreoftheproof i ofProposition3.7istoshowthatthesewinginvolutionassociatedtoeachHakenmanifold ofHdoesfixthesewinginvolutions whichproducesN fromN∗. Notethatinthisstep i i i theconditionontheGromovsimplicialvolumeisstillcrucialinourproof. 3.3. Organizationofthepaper. Thispaperisorganizedasfollows. Section4isdevoted tothestatementofamappingresultformapsfromSeifertfiberedspacestoHakenmani- folds.ThisresulthasonlyatechnicalinterestandwillbeusedinSections5and6.Section 5isdevotedtothe proofofProposition3.3andinSection6 weproveProposition3.7to completethe proofof Proposition3.2. Section 7 is devotedto the proofof Theorem1.1 whichisaconsequenceofTheorems1.2and1.3. 4. ON THECHARACTERISTIC PAIR THEOREMOF W. JACO AND P. SHALEN WestartbyrecallingamainconsequenceoftheCharacteristicPairTheoremofW.Jaco and P. Shalen (see [JS, Chapter V]) which allows to control a nondegeneratemap from a Seifert fibered space into a Haken manifold. We first give the definition of degenerate mapsinthesenseofW.JacoandP.Shalen. Definition4.1. Let(S,F) be a connectedSeifert pair, and let (N,T) be a connected3- manifoldpair. Amapf: (S,F)→(N,T)issaidtobedegenerateifeither (0)themapf isinessentialasamapofpairs,or (1)thegroupIm(f : π S →π N)={1},or ∗ 1 1 (2)thegroupIm(f : π S →π N)iscyclicandF =∅,or ∗ 1 1 (3)themapf|γishomotopicinN toaconstantmapforsomefiberγ of(S,F). ThentheCharacteristicPairTheoremofJacoandShalenimpliesthefollowingresult. Theorem4.2. [Jaco, Shalen]Iff isa nondegeneratemapofa Seifertpair(S,∅) intoa Hakenmanifoldpair(M,∅),thenthereexistsamapf ofS intoM,homotopictof,such 1 thatf (S)⊂int(Σ(M)). 1 The purpose of this section is to give a kind of mappinglemma for a certain class of degeneratemaps. Morepreciselyweshowherethefollowingresultwhichwillbeusedin theproofofTheorem1.2. Lemma 4.3. Let f: M → N be a map between closed Haken manifolds and suppose that N is non-geometric and contains no embedded Klein bottles. Let S and S′ be two componentsofS(M)whichareadjacentinM alongasubfamilyT ofT . Assumethat M S andS′satisfythefollowinghypothesis: (i)f(S′)⊂int(B′),whereB′ isacomponentofΣ(N),and (ii)f (t )6=1,wheret denotesthehomotopyclassoftheregularfiberofS. ∗ S S 7 Then there exists a component B of Σ(N), with regular fiber h, and a homotopy (f ) which is constant outside of a regular neighborhood of S such that f = f t 0≤t≤1 0 andf (S) ⊂ int(B). Moreoverif(f ) (t )isnotconjugatetoanon-trivialpowerofh 1 1 ∗ S thenonecanchooseB =B′ andthusf (S∪ S′)⊂int(B′). 1 T S S′ tS tS′ f B′ B h h′ Proof. Let T be a canonical torus of M such that T ∈ ∂S ∩∂S′ and denote by t the S regularfiberofS representedinT. Itfollowsfromthehypothesisofthelemmathatthere existsa Seifertpiece B′ of Σ(N) such that f(S′) ⊂ B′ and thusf (t ) ∈ π B′ \{1}. ∗ S 1 FixabasepointxinT,insuchawaythatthegroupsπ Sandπ S′arealwaysconsidered 1 1 withbasepointxanddenotebyy =f(x)abasepointinB′. Case1. Iff (π S)isnonabelian,sincef (t ) 6= {1},thenf|S: S → N isanonde- ∗ 1 ∗ S generatemap. HencetheCharacteristicPairTheoremimpliesthatthereexistsB ∈Σ(N) such that f(S) ⊂ int(B). Moreoversince f (π S) is nonabelian then f (t ) has non- ∗ 1 ∗ S abelian centralizer and [JS, Addendum to Theorem VI.I.6] implies that f (t ) ∈ hhi, ∗ S where h denotes the regular fiber of B. This proves the lemma when f (π S) is non- ∗ 1 abelian. Assumethatf (π S)isabelian.Sinceπ N istorsionfree,andsinceN isanaspherical ∗ 1 1 3-manifold then the subgroup f (π S) of π N must have cohomological dimension at ∗ 1 1 most3andthusitisisomorphictoeitherZorZ×ZorZ×Z×Z. ThecaseZ×Z×Z isexcludedsinceN isanon-geometricclosedHakenmanifold. Case 2. Thus assume first that f (π S) ≃ Z × Z. In this case f|S: S → N is ∗ 1 still a nondegenerate map and the Characteristic Pair Theorem implies that there exists componentB ∈Σ(N),withregularfiberh,adjacenttoB′inN suchthatf(S)⊂int(B), afterahomotopyonf. Supposethatf (t ) 6∈ hhi. Thusby[JS,AddendumtoTheorem ∗ S VI.I.6]weknowthatthecentralizerZ (f (t ))off (t )inπ (B,y)isnecessarily |π1(B,y) ∗ S ∗ S 1 abelian. Letcbeanelementofπ S. Thenf (c) ∈ Z (f (t )). Denotebyh′ the 1 ∗ |π1(B,y) ∗ S 8 PIERREDERBEZ regularfiberofB′representedinacomponentofB∩B′insuchawaythat h′ ∈π (B,y)∩π (B′,y) 1 1 Since f (t ) ∈ π (B′,y) ∩ π (B,y) (recall that t ∈ π (S,x) ∩ π (S′,x)) then h′ ∗ S 1 1 S 1 1 commuteswithf (t )andsinceh′ ∈ π (B′,y)∩π (B,y)thenh′ ∈ Z (f (t )). ∗ S 1 1 |π1(B,y) ∗ S Thus, since Z (f (t )) is abelian this implies that f (c) ∈ Z(h′). Since c is an |π1(B,y) ∗ S ∗ arbitraryelementinπ Sthenf (π S)⊂Z(h′). Thisimpliesthatf (π S)isconjugateto 1 ∗ 1 ∗ 1 asubgroupofπ (B′,y).Thenafterahomotopyonf wemayassumethatf(S)⊂int(B′). 1 Thisprovethelemmawhenf (π S)≃Z×Z. ∗ 1 Case3.Assumenowthatf (π S)≃Z.Thenthereexistsanelementc∈π Ssuchthat ∗ 1 1 f (π S) = hf (c)iandinparticularthereexistsn ∈ Z∗ suchthatf (t ) = (f (c))n. In ∗ 1 ∗ ∗ S ∗ thefollowing[a,b]denotesthecommutatorofaandb.SinceinthiscasetheCharacteristic PairTheoremdoesnotapply,sincef|S: S →N isadegeneratemap,wefirstprovethat thereexistsB ∈S(N)suchthatf(S)⊂int(B),afterahomotopyonf. Subcase3.1. Assumethat[f (c),h′] = 1. Inthiscasef (c),andhencef (π S),isin ∗ ∗ ∗ 1 thecentralizerofh′ andthusonecandeformf onaregularneighborhoodofS suchthat f(S)⊂int(B′). Subcase 3.2. Assume that [f (c),h′] 6= 1. Since f (c) and h′ are in the centralizer ∗ ∗ Z(f (t )) of f (t ) then the group Z(f (t )) is non-abelian. Then by [JS, Addendum ∗ S ∗ S ∗ S toTheoremVI.I.6]weknowthatf (t )isconjugatetoapoweroftheregularfiberhof ∗ S aSeifertpieceB ofS(N). Thusonecandeformf onaregularneighborhoodofS such that f(S) ⊂ int(B). Note that since a power of f (c) lies in hhi then by [JS, Lemma ∗ II.4.2],f (c)=cαi,wherec denotesthehomotopyclassofanexceptionalfiberinBand ∗ i i α ∈Z∗. i TocompletetheproofofthelemmainCase3itissufficienttoapplythesameargument asincase2. (cid:3) 5. CONTROL OF THEGEOMETRICPIECES OF THETARGETS This section is devoted to the proof of Proposition 3.3. To this purpose we first give a proof of Lemma 3.4. Let M be a closed orientable 3-manifold and let f: M → N beanonzerodegreemapintoaclosednon-geometricHakenmanifoldwhichcontainsno embeddedKleinBottlessuchthatVol(M)=deg(f)Vol(N). Firstweclaimthattoprove Lemma 3.4 there is no loss of generality assuming that M is a closed Haken manifold. Indeed,considertheMilnordecompositionofM intoprimemanifoldsM = M ♯...♯M 1 k (see[M]). Sinceπ (N)istrivial,thereexists,foreachi∈{1,...,k}amapf : M →N 2 i i such that deg(f )+...+deg(f ) = deg(f). Note that when deg(f ) 6= 0 then M is 1 k i i necessarilyaclosedHakenmanifold.OntheotherhandifVol(M)=deg(f)Vol(N)then the Cutting of Theoremof M. Gromov,[G], implies thatthere exists i ∈ {1,...,k}such that f : M → N has nonzero degree and satisfies Vol(M ) = deg(f )Vol(N). Then i i i i fromnowoneweassumethatM isaclosedHakenmanifold. 5.1. AconvenientalternativetoLemma3.4. 5.1.1. Sectionsof Seifert fibered spaces. Let S be an orientableH2 ×R-Seifertfibered space with non-empty boundary and orientable basis B. Then the Seifert fibration of S is unique and we denote by η: S → B the canonical projection map. If S has exceptional fibers C ,...,C , let D ,...,D be pairwise disjoint 2-cells neighborhood 1 r 1 r of η(C ),...,η(C ) in int(B). Let B′ = B \ ∪ int(D ) and S′ = η−1(B′). Then 1 r i i 9 η|S′: S′ → B′ is the orientable circle bundle over B′ and since B′ is orientable then S′ =B′×S1. Chooseacrosssections : B′ →S′ofthecirclebundle. Wemaychoose 0 standardsgeneratorsof∂S′,withrespecttothischoiceofacrosssection,inthefollowing way.Denote∂S′ =∂S∪U ∪...∪U whereU =∂η−1(D ). Thenforeachcomponent 1 r j j U (resp. T of ∂S)we choosegeneratorst, q (resp. t, δ(S,T )) wheret is represented j i j i byaregularfiberandq (resp. δ(S,T )) is theboundarycurveofthecrosssections in j i 0 U (resp. in T ). Inthefollowingthecurveδ(S,T )willbetermeda sectionofT (with j i i i respectto theSeifertfibrationofS). Noticethatif wereplacethesections byanother 0 ones: B′ →S′thenthesectionδ(S,T )ofT isreplacedbyδ(S,T )tm,m∈Z. i i i 5.1.2. Dehnfillings. LetQbeacompactorientedthreemanifoldwhoseboundaryismade of tori T ,...,T . For each i = 1,...,k we fix generatorsl ,m of π T . Let P be the 1 k i i 1 i ∗ subsetofS2 =C∪{∞}definedby P ={(p,q)∈Z×Z,gcd(p,q)=1}∪{∞} ∗ where gcd(p,q) denotes the greatest common divisor of p and q. We will denote by Q the 3-manifold obtained from Q by gluing to each T , i = 1,...,k, a solid d1,...,dk i torus S1 × D2 identifying a meridian m = {z } × ∂D2 with p l + q m when 0 i i i i d = (p ,q ) ∈ P \{∞}. When d = ∞ the torus T is cut out. On the other hand i i i ∗ i i recallthatthemanifoldsobtainedinthiswaydepend,uptodiffeomorphism,onlyonthe pairofintegers(p ,q )withgcd(p ,q )=1.LetM beclosedHakenmanifold.Fromnow i i i i onweadoptthefollowingconvention. ForeachT in∂S(M)wefixaSeifertfiberedspaceSadjacenttoT andabasis(h ,δ ) T T ofπ (T)whereh correspondstothegenericfiberh(S)ofS andδ isasectionδ(S,T) 1 T T ofT withrespecttotheSeifertfibrationofSasdefinedinParagraph4.1.1.IfSisadjacent toaSeifertfiberedspaceS′alongT wedenoteby(h(S′),δ(S′,T))anotherbasisforπ T 1 withrespecttoS′ inthesamewayasforS. Wedenotebyd = (a ,b )theelementof T T T P suchthath(S′)=a h +b δ . Notethatb 6=0bytheminimalitypropertyofT . ∗ T T T T T M DenotebyP0thefinitesubsetofP definedby ∗ ∗ P0 ={(a ,b ),T ∈∂S(M)\∂S(M)∩∂H(M),(1,0)} ∗ T T ThentoproveLemma3.4itissufficienttostatethefollowingresult. Lemma 5.1. Let M be a closed Haken manifold and let N be a closed non-geometric HakenmanifoldthatcontainsnoembeddedKleinbottles.Iff: M →N denotesanonzero degreemapsatisfyingVol(M)=deg(f)Vol(N)thenthereexistsacanonicalsubmanifold G ofM whoseboundaryismadeofsomecomponentsof∂S(M)\∂S(M)∩∂H(M) N andsuchthatifT ,...,T denotesthecomponentsof∂G thenthereexistsd ,....,d in 1 k N 1 k P0satisfyingthefollowingproperties: ∗ (a)(G ) isaclosedHakenmanifold,and N d1,...,dk (b)there exists a nonzerodegreemapg: (G ) → N satisfyingpoints(i), (ii) N d1,...,dk and(iii)ofLemma3.4. 5.2. Non-zero degree maps preserving the Seifert part of the domain. In this sec- tion we prove that Lemma 5.1 is true for non-zerodegree maps f : M → N such that Vol(M)=deg(f)Vol(N)andsatisfyingf(S(M))⊂int(S(N)). Lemma 5.2. Let f : M → N be a nonzero degree map between non-geometricHaken manifolds such that Vol(M) = deg(f)Vol(N). If f(S(M)) ⊂ int(S(N)) then there existsamaphomotopictof whichsatisfiestheconclusionofLemma3.4. 10 PIERREDERBEZ Proof. First of all note that using the constructionof T. Soma in [S1] one can modifyf byahomotopyfixingf|S(M)insuchawaythatf(H(M),∂H(M))⊂(H(N),∂H(N)) andf|H(M):H(M)→H(N)isadeg(f)-foldcovering. Let T ∈ T . Using standard cut and paste arguments and the fact that ∂S(M) and N ∂H(M)areincompressiblewecanmodifyf byahomotopyfixingf|S(M)∪H(M),so that f−1(T) is a collection of 2-sided incompressible surfaces in M. Since f−1(T) ⊂ M \(S(M)∪H(M))itmustbeaunionofparallelcopiesofsometoriinT ×(−1,1). M Wecanarrangef initshomotopyclasssothatforanyU ∈ T ,aregularneighborhood M U×[−1,1]ofU containsatmostonecomponentoff−1(T). Indeed,supposethatX and X′aretwoconsecutivecomponentsoff−1(T)∩(U ×[−1,1]). ThenX andX′bounda regionQinU×[−1,1]whichishomeomorphictoS1×S1×IandthereisaSeifertpiece B inS(N)sothatf(Q,∂Q)⊂ (B,∂B). Thenby[Ro2,Lemma2.8],f|Qishomotopic, mod.∂Q,toamapf suchthatf (Q)⊂∂B,unlessB ≃S1×S1×I whichisexcluded 1 1 since N is not a geometric 3-manifold. So we can eliminate X and X′ by pushing Q intoN −B. Afterrepeatingthisoperationafinitenumberoftimeswemayassumethat f−1(T)∩(U ×[−1,1])hasatmostonecomponent. Notethatsincef : M → N isa nonzerodegreemapthenf (π M)hasfiniteindex ∗ 1 in π N andthusfor anyS in S(N) there existsat leastone componentof S(M) which 1 issentintoint(S)viaf. Sof−1(S)consistsofsomecomponentsofS(M) unionsome T×[−1,1]forT inT (preciselywhenf−1(T )∩(T×[−1,1])=∅).Soeachcomponent M N off−1(S)isacanonicalgraphsubmanifoldofM. ThisprovesLemma5.2. (cid:3) 5.3. Proofof Lemma 5.1: the generalcase. We first realize a kind of factorizationon themapf whichisinspiredfromaconstructionofY.Rongin[Ro2]tohaveareductionto thecaseofLemma5.2. IfSisacomponentofS(M)wedenotebyt thehomotopyclass S oftheregularfiberinS. LetB betheunionofallS inS(M)suchthatf|Sisdegenerate 0 inthesenseofDefinition4.1. Iff|S isadegeneratemaptheneither Case1 f (π S)={1}or, ∗ 1 Case2 f (π S)=Zor, ∗ 1 Case3 Sinceπ (N)istorsionfree,(f|S) :π S →π N factorsthroughπ V,whereV 1 ∗ 1 1 1 isthebase2-manifoldoftheSeifertfiberedspaceS. SetG =M −B . DefineasubsetofB bysetting 0 0 0 S ={S ∈B \(B ∩T )s.t.S isadjacenttoG andf (t )6=1} 0 0 0 M 0 ∗ S andsetB =B −S andG =M −B . Wecontinuethisprocessbysetting 1 0 0 1 1 S ={S ∈B \(B ∩T )s.t.S isadjacenttoG andf (t )6=1} 1 1 1 M 1 ∗ S to construct an increasing sequence G ⊂ G ⊂ ... ⊂ G ⊂ G ⊂ ... of canonical 0 1 i i+1 submanifoldsofM. Weclaimthatthissequencesatisfiesthefollowingconditions: (1) thenumberofconnectedcomponentsn ofG satisfiesn ≤n , i i i+1 i (2) for any i, int(G ) contains H(M) and f|∂H(M): ∂H(M) → N is a non- i degenerate(i.e. π -injective)map, 1 (3) forany i there existsa non-zerodegreemap β : Gˆ → N such thatdeg(β ) = i i i deg(f),whereGˆ denotesthespaceobtainedfromG afterperformingsomeDehn i i fillingsalongthecomponentsof∂G . i ForthisreasonG iscalledanessentialpartofM withrespecttof. Wedefineaninteger i n bysetting: 0 n =min{n≥0suchthatG =G } 0 n n+1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.