ebook img

Non-unitary minimal models, Bailey's lemma and N=1,2 superconformal algebras PDF

0.17 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Non-unitary minimal models, Bailey's lemma and N=1,2 superconformal algebras

NON-UNITARY MINIMAL MODELS, BAILEY’S LEMMA AND N =1,2 SUPERCONFORMAL ALGEBRAS LIPIKADEKAANDANNESCHILLING 5 0 0 ABSTRACT. Using the Bailey flow construction, we derive character identities for the 2 N =1superconformalmodelsSM(p′,2p+p′)andSM(p′,3p′−2p),andtheN =2 n superconformalmodelwithcentralchargec = 3(1− 2pp′)fromthenonunitaryminimal a modelsM(p,p′).AnewRamondsectorcharacterformulaforrepresentationsofN =2 J superconformalalgebraswithcentralelementc=3(1− 2pp′)isgiven. 4 1 2 v 1. INTRODUCTION 4 8 Bailey’slemmaisapowerfulmethodtoproveq-seriesidentitiesoftheRogers–Ramanujan- 0 type[3]. OneofthekeyfeaturesofBailey’slemmaisitsiterativestructurewhichwasfirst 2 observedby Andrews[2] (see also [22]). This iterative structure called the Bailey chain 1 makesitpossibletostartwithoneseedidentityandderiveaninfinitefamilyofidentities 4 0 from it. The Bailey chain has been generalized to the Bailey lattice [1] which yields a / wholetreeofidentitiesfromasingleseed. h TherelevanceoftheAndrews–Baileyconstructiontophysicswasfirstrevealedinthe p - papersbyFodaandQuano[14,15]inwhichtheyderivedidentitiesfortheVirasorochar- h actersusingBailey’slemma.BytheapplicationofBailey’slemmatopolynomialversions t a ofthecharacteridentityofoneconformalfieldtheory,oneobtainscharacteridentitiesof m anotherconformalfieldtheory. Thisrelationbetweenthe twoconformalfieldtheoriesis : calledBaileyflow. In[4]itwasdemonstratedthatthereisaBaileyflowfromtheminimal v modelsM(p−1,p)toN =1andN =2superconformalmodels. Moreprecisely,itwas i X shownthatthereisaBaileyflowfromM(p−1,p)toM(p,p+1),andfromM(p−1,p) r totheN =1superconformalmodelSM(p,p+2)andtheunitaryN =2superconformal a modelwithcentralchargec=3(1−2). Intheconclusionsof[4]itwasmentionedthatthis p constructioncanalsobecarriedoutforthenonunitaryminimalmodelsM(p,p′)wherep andp′ arerelativelyprime. Inthispaperweconsiderthenonunitarycase. We showthat starting with character identities for the nonunitary minimal model M(p,p′) of [6, 26], charactersoftheN = 1superconformalmodelsSM(p′,2p+p′),SM(p′,3p′−2p)and oftheN =2superconformalmodelwithcentralelementc=3(1−2p)canbeobtainedvia p′ theBaileyflow. WealsogiveanewRamondsectorcharacterformulaforarepresentation oftheN =2superconformalmodelwithcentralelementc=3(1− 2p). p′ ThecharacteridentitiesobtainedfromtheBaileyflowconstructionareofBose-Fermi type.Thebosonicsideisassociatedwiththeconstructionofsingularvectorsoftheunder- lyingconformalfieldtheory.Thefermionicsideisusuallymanifestlypositiveandreflects thequasiparticlestructureofthemodel. Date:December2004. SupportedinpartbyNSFgrantDMS-0200774. 1 2 L.DEKAANDA.SCHILLING The paperis organizedasfollows. In section 2 we providethe necessarybackground aboutBaileypairsandfermionicformulasoftheM(p,p′)models.Thissectionisaddedto makethispaperself-contained.Fordetailsthereadershouldconsult[4,6,7]. Insection3 thecharactersoftheN =1supersymmetricmodelsSM(2p+p′,p′)andSM(3p′−2p,p′) arederivedusingtheBaileyflow. Explicitfermionicexpressionsforthesecharactersare given. Insection4thebackgroundregardingN = 2superconformalmodelsisstatedand anewcharacterfortheRamondsectorisderived. Thenitisdemonstratedhowtoobtain the charactersof the N = 2 superconformalmodelwith centralelementc = 3(1− 2p) p′ viathe Baileyflow alongwith theexplicitfermionicexpressionsforthese characters. In section5weconcludewithsomeremarks. Acknowledgment. SpecialthankstoProfessorGaberdielandHannoKlemmfortheirhelp throughthejungleofliteratureregardingN =2characterformulasandtheirhelpregard- ingthespectralflowofN = 2superconformalalgebras. Wearegratefultobothofthem fortheire-mailcorrespondences.WewouldalsoliketothankProfessorDobrevforhelpful discussions. 2. BAILEY’S LEMMA InthissectionwesummarizeBailey’soriginallemma[2,3]andtheBose-Fermiidenti- tiesfortheM(p,p′)minimalmodels[5,6,16,26]. 2.1. Bilateral Bailey lemma. A pair (α ,β ) of sequences {α } and {β } is n n n n≥0 n n≥0 calledaBaileypairwithrespecttoaif n α (2.1) β = j n (q) (aq) n−j n+j j=0 X where n−1 (a) :=(a;q) = (1−aqk), n n k=0 Y 1 (a) :=(a;q) = . −n −n n (1−aq−k) k=1 Following[4],wearegoingtouseanextendedQdefinitioninthispapercalledthebilateral Baileypair. Apair(αn,βn)ofsequences{αn}n∈Z and{βn}n∈Z issaidtobeabilateral Baileypairwithrespecttoaif n α (2.2) β = j . n (q) (aq) n−j n+j j=−∞ X Theorem2.1(BilateralBaileylemma[2,3,4]). If(α ,β )isabilateralBaileypairthen n n ∞ (ρ ) (ρ ) (aq/ρ ρ )nβ 1 n 2 n 1 2 n n=−∞ (2.3) X (aq/ρ ) (aq/ρ ) ∞ (ρ ) (ρ ) (aq/ρ ρ )nα 1 ∞ 2 ∞ 1 n 2 n 1 2 n = . (aq) (aq/ρ ρ ) (aq/ρ ) (aq/ρ ) ∞ 1 2 ∞ n=−∞ 1 n 2 n X NON-UNITARYMINIMALMODELS,BAILEY’SLEMMAANDN=1,2SUPERCONFORMALALGEBRAS 3 ThislemmahasbeenusedwithvariousBaileypairsanddifferentspecializationsofthe parametersρ andρ toprovemanyq-seriesidentities(seeforexample[1,4,15,25]). In 1 2 this paper the bilateral Bailey lemma is used to derive character identities for N = 1,2 superconformalalgebrasfromnonunitaryminimalmodelsM(p,p′). AusefulwaytoobtainnewBaileypairsfromoldonesistheconstructionofdualBailey pairs.If(α ,β )isabilateralBaileypairwithrespecttoa,thedualBaileypair(A ,B ) n n n n isdefinedas A (a,q)=anqn2α (a−1,q−1), n n (2.4) B (a,q)=a−nq−n2−nβ (a−1,q−1). n n Then(A ,B )satisfies(2.2)withrespecttoa. n n 2.2. BaileypairsfromtheminimalmodelsM(p,p′). AsshownbyFodaandQuano[15], theBose-Fermicharacteridentities[5,6,16,26]fortheminimalmodelsM(p,p′)areof theform (2.5) B (L,b;q)=q−Nr(b),sF (L,b;q), r(b),s r(b),s withN asgivenin[6]and r(b),s ∞ B (L,b;q)= qj(jpp′+r(b)p′−sp) L r(b),s 1(L+s−b)−jp′ j=−∞ (cid:20) 2 (cid:21)q (2.6) X −q(jp−r)(jp′−s) L . 1(L−s−b)+jp′ (cid:20) 2 (cid:21)q! Here n (q) (2.7) = n j (q) (q) (cid:20) (cid:21)q j n−j istheq-binomialcoefficient. ThefunctionfermionicformulaF (L,b;q)willbedis- r(b),s cussed in the next section. For simplicity we are going to write r for r(b). Follow- ing[15,4]theidentity(2.5)yieldsthebilateralBaileypairrelativetoa= qb−s+2x where x= L−2n−b+s 2 qj(jpp′+rp′−sp) ifn=jp′−x α = −q(jp−r)(jp′−s) ifn=jp′−b−x n  (2.8) 0 otherwise β =q−Nr,sF(p,p′)(2n+b−s+2x,b;q). n (aq) r,s 2n ThedualBaileypairto(2.8)relativetoa=qb−s+2x is qj2p′(p′−p)−jp′(r−b)−js(p′−p)−x(b+x−s) ifn=jp′−x αˆ = −q(jp′−s)(j(p′−p)+r−b)−x(b+x−s) ifn=jp′−b−x n  (2.9) 0 otherwise βˆ =qNr,s anqn2F(p,p′)(2n+b−s+2x,b;q−1). n (aq) r,s 2n 4 L.DEKAANDA.SCHILLING Inserting(2.8)and(2.9)intothebilateralBaileylemmayields ∞ (ρ ) (ρ ) (aq/ρ ρ )nq−Nr(b),sF(p,p′)(2n+b−s+2x,b;q) 1 n 2 n 1 2 (aq) r,s n=0 2n X ∞ = (aq/ρ1)∞(aq/ρ2)∞ (ρ1)jp′−x(ρ2)jp′−x (aq/ρ ρ )jp′−x 1 2 (aq)∞(aq/ρ1ρ2)∞ (aq/ρ1)jp′−x(aq/ρ2)jp′−x (2.10) j=X−∞ ×qj(jpp′+rp′−sp)− (ρ1)jp′−b−x(ρ2)jp′−b−x (aq/ρ1)jp′−b−x(aq/ρ2)jp′−b−x ×(aq/ρ ρ )jp′−b−xq(jp−r)(jp′−s) 1 2 ! and ∞ (ρ ) (ρ ) (aq/ρ ρ )nqNr(b),sanqn2F(p,p′)(2n+b−s+2x,b;q−1) 1 n 2 n 1 2 (aq) r,s n=0 2n X ∞ = (aq/ρ1)∞(aq/ρ2)∞ (ρ1)jp′−x(ρ2)jp′−x (aq/ρ ρ )jp′−x 1 2 (aq)∞(aq/ρ1ρ2)∞ (aq/ρ1)jp′−x(aq/ρ2)jp′−x (2.11) j=X−∞ ×qj2p′(p′−p)−jp′(r−b)−js(p′−p)−x(b+x−s)− (ρ1)jp′−b−x(ρ2)jp′−b−x (aq/ρ1)jp′−b−x(aq/ρ2)jp′−b−x ×(aq/ρ ρ )jp′−b−xq(jp′−s)(j(p′−p)+r−b)−x(b+x−s) . 1 2 ! Asin[4],wearegoingtoconsiderdifferentspecializationsoftheparametersρ andρ in 1 2 (2.10)and(2.11)togetcharacteridentitiesforN =1,2superconformalalgebras. 2.3. FermionicformulasforM(p,p′). Sofarwehaveonlyconsideredthebosonicside of(2.5) explicitly. Itsufficesforthe purposeofthispaperto state the fermionicformula for the case p < p′ < 2p with p and p′ relatively prime and r,s being pure Takahashi length.Wefollow[7,Section4].Thefermionicformuladependsonthecontinuedfraction decomposition p′ 1 =1+ν + . p′−p 0 1 ν + 1 1 ν +··· 2 ν +2 n0 Definet = i−1ν for1≤i≤n +1andthefractionallevelincidencematrixI and i j=0 j 0 B correspondingCartanmatrixBas P δ +δ for1≤j <t ,j 6=t j,k+1 j,k−1 n0+1 i (I ) = δ +δ −δ forj =t ,1≤i≤n −δ B j,k  j,k+1 j,k j,k−1 i 0 νn0,0 δj,k+1+δνn0,0δj,k forj =tn0+1 B =2I −I , tn0+1 B whereI istheidentitymatrixofdimensionn. Recursivelydefine n y =y +(ν +δ +2δ )y , y =0, y =1, m+1 m−1 m m,0 m,n0 m −1 0 y =y +(ν +δ +2δ )y , y =−1, y =1. m+1 m−1 m m,0 m,n0 m −1 0 NON-UNITARYMINIMALMODELS,BAILEY’SLEMMAANDN=1,2SUPERCONFORMALALGEBRAS 5 ThentheTakahashilengthandtruncatedTakahashilengtharegivenby ℓ =y +(j−t )y j+1 m−1 m m fort <j ≤t +δ with0≤m≤n . ℓ =y +(j−t )y m m+1 m,n0 0 j+1 m−1 m m Forb = ℓ ,r(b) = ℓ witht < β ≤ t +δ ands = ℓ witht < σ ≤ β+1 β+1 ξ ξ+1 ξ,n0 σ+1 ζ t +δ thefermionicformulaisgivenby ζ+1 ζ,n0 (2.12) Fr(,ps,p′)(L,b;q)=qkb,s q14mtBm−21Au,vmtn0+1 njm+mj ′ m≡Qu,vX(mod2) jY=1 (cid:20) j (cid:21)q wherekb,s isanormalizationconstantandn,m∈Ztn0+1 suchthat 1 (2.13) n+m= I m+u+v+Le B 1 2 (cid:16) (cid:17) with ei the standard i-th basis element of Ztn0+1, u = eβ − nk=0ξ+1etk, v = eσ − n0 e andQ ,A asdefinedin[7,Section4.2].Theq-binomialisalsodefined k=ζ+1 tk u,v u,v P fornegativeentries P ′ n+m (qn+1) m = . m (q) (cid:20) (cid:21)q m Notethat ′ ′ n+m n+m (2.14) =q−nm . m m (cid:20) (cid:21)q−1 (cid:20) (cid:21)q Infactusing(2.14)we getthe followingdualformofthe fermionicformulathatwillbe usefullateron (2.15) F(p,p′)(L,b;q−1)= r,s q−kb,s q41mtBm−12Lm1+12Au,vm−21mt(u+v)tn0+1 nj +mj ′ . m m≡XQu,v jY=1 (cid:20) j (cid:21)q 3. N =1SUPERCONFORMAL CHARACTER FROMM(p,p′) Inthissectionwearegoingtoconsiderthespecializationin(2.10)and(2.11) (3.1) ρ −→∞, ρ =finite. 1 2 We will see that these give characters of the N = 1 superconformal model SM(p,p′) givenby[10,17], (3.2) χ˜(rp,s,p′)(q)=χ˜(pp−,pr′,p)′−s(q)= (−q(qǫr)−s)∞ ∞ qj(jpp′+2rp′−sp) −q(jp−r)2(jp′−s) , ∞ j=X−∞(cid:16) (cid:17) where1≤r ≤p−1,1≤s≤p′−1,pand(p′−p)/2arerelativelyprimeand 1 ifiiseven(NS-sector), (3.3) ǫ = 2 i (1 ifiisodd(R-sector). Thecentralchargeisc= 3 − 3(p−p′)2. 2 pp′ 6 L.DEKAANDA.SCHILLING 3.1. ThemodelSM(p′,2p+p′). Specializingρ1 −→∞andρ2 =−qb−2s+1 withx=0 in(2.10)wefindforb−seven(NSsector) (3.4) χ˜(p′,2p+p′)(q)= q12(n2+nb−ns)(−q12)n+(b−s)/2q−Nr,sF(p,p′)(2n+b−s,b;q) s,2r+b (q) r,s 2n+b−s n≥0 X andforb−sodd(R-sector) (3.5) χ˜(p′,2p+p′)(q)= q21(n2+nb−ns)(−q)n+(b−s−1)/2q−Nr,sF(p,p′)(2n+b−s,b;q). s,2r+b (q) r,s 2n+b−s n≥0 X Toobtainanexplicitfermionicformulasetm =L=2n+b−sandinsert(2.12)into 0 (3.4). Thenusing m0 (3.6) (−q21)m20 = 2 q12(m20−k)2 mk20 k=0 (cid:20) (cid:21)q X wefind χ˜(p′,2p+p′)(q)=q−81(b−s)2−Nr,s+kb,s ∞ m20 q18m20+21(m20−k)2 s,2r+b (3.7) mmX00e=ve0nXk=0m≡XQu,v ×q41mtBm−12Au,vm× 1 m20 tn0+1 nj +mj ′ . (q)m0 (cid:20) k (cid:21)q j=1 (cid:20) mj (cid:21)q Y Settingp=(k,m0,m)∈Ztn0+1+2,(3.7)intheNS-sectorcanberewrittenas χ˜(p′,2p+p′)(q)=q−81(b−s)2−Nr,s+kb,s q14ptB˜p−21A˜u,vp s,2r+b p∈ZXtn0+1+2 (3.8) pi≡(Q˜u,v)i,i≥2 1 tn0+1+2 1(I p+u˜+v˜) ′ × 2 B˜ j (q)p2 j=1,j6=2(cid:20) pj (cid:21)q Y whereI =2I −B˜, B˜ tn0+1+2 2 −1 0 B˜ = −1 1 1   0 −1 B A˜ =(0,0,A ),  (3.9) u,v u,v u˜t =(0,0,ut), v˜t =(0,0,vt), Q˜t =(0,0,Qt ). u,v u,v Similarlysettingm =2n+b−sin(3.5)andusing 0 m0+1 (3.10) (−q)m02−1 = 21 k=20 q12(m02+1−k)(m02−1−k)(cid:20) m0k2+1 (cid:21)q X NON-UNITARYMINIMALMODELS,BAILEY’SLEMMAANDN=1,2SUPERCONFORMALALGEBRAS 7 wegetthefermionicformulaintheR-sector, (3.11) χ˜(p′,2p+p′)(q)= 1q−18((b−s)2+1)−Nr,s+kb,s q41ptB˜p−21A˜u,vp s,2r+b 2 p∈ZXtn0+1+2 pi≡(Q˜u,v)i,i≥2 1 tn0+1+2 1(I p+u˜+v˜) ′ × 2 B˜ j (q)p2 j=1,j6=2(cid:20) pj (cid:21)q Y whereB˜,A˜,v˜ areasin(3.9)andu˜t =(1,0,ut),Q˜t =(0,1,Qt ). u,v u,v 3.2. ThemodelSM(p′,3p′−2p). Similarlyusingthesamespecializationwiththedual Baileypairin(2.11)wefindforb−sevenintheNS-sector (3.12) χ˜(p′,3p′−2p)(q)= q32n(n+b−s)(−q21)n+(b−s)/2qNr,sF(p,p′)(2n+b−s,b;q−1) s,3b−2r (q) r,s 2n+b−s n≥0 X andforb−soddintheR-sector (3.13) χ˜(p′,3p′−2p)(q)= q32n(n+b−s)(−q)n+(b−s−1)/2qNr,sF(p,p′)(2n+b−s,b;q−1). s,3b−2r (q) r,s 2n+b−s n≥0 X To obtain the fermionic formula, as before we are going to set m = 2n + b − s. 0 Inserting(3.10)and(2.15)into(3.13)wegetintheR-sector χ˜(sp,3′,b3−p2′−r2p)(q)= 21q−81(3(b−s)2+1)+Nr,s−kb,s ∞ m02+1 mmX00=od0d kX=0 m≡XQu,v (3.14) ×q21(m20+k2−m0k−m0m1)q14mtBm−12mt(u+v)+12Au,vm × 1 m02+1 tn0+1 nj +mj ′ . (q)m0 (cid:20) k (cid:21)q j=1 (cid:20) mj (cid:21)q Y Definep=(k,m0,m)∈Ztn0+1+2,sothat(3.14)intheR-sectorcanberewrittenas (3.15) χ˜(sp,3′,b3−p2′−r2p)(q)= 21q−18(3(b−s)2+1)+Nr,s−kb,s q41ptB˜′p+21A˜u,vp p∈ZXtn0+1+2 pi≡(Q˜′u,v)i,i≥2 1 tn0+1+2 1(I p+u˜+v˜) ′ × 2 B˜′ j (q)p2 j=1,j6=2(cid:20) pj (cid:21)q Y whereI =2I −B˜′,v˜ asin(3.9),u˜t =(1,0,ut),(Q˜′ )t =(0,1,Qt ),and B˜′ tn0+1+2 u,v u,v 2 −1 0 B˜′ = −1 2 −1 (3.16)   0 −1 B A˜ =(0,0,A −ut−vt). u,v u,v 8 L.DEKAANDA.SCHILLING Similarly,fortheNS-sectoritfollowsfrom(3.12) (3.17) χ˜(sp,3′,b3−p2′−r2p)(q)=q−83(b−s)2+Nr,s−kb,s q41ptB˜′p+12A˜u,vp p∈ZXtn0+1+2 pi≡(Q˜′u,v)i,i≥2 1 tn0+1+2 1(I p+u˜+v˜) ′ × 2 B˜′ j (q)p2 j=1,j6=2(cid:20) pj (cid:21)q Y withB˜′andA˜ asin(3.16),(Q˜′ )t =(0,0,Qt ),u˜t =(0,0,ut)andv˜t =(0,0,vt). u,v u,v u,v 4. N =2CHARACTER FORMULAS 4.1. N = 2 superconformal algebra and Spectral flow. The N = 2 superconformal algebraAistheinfinitedimensionalLiesuperalgebra[13]withbasisL ,T ,G±,C and n n r (anti)-commutationrelationgivenby C [L ,L ]=(m−n)L + (m3−m)δ m n m+n m+n,0 12 1 L ,G± =( m−r)G± m r 2 m+r (cid:2)[L ,T (cid:3)]=−nT m n m+n 1 [T ,T ]= cmδ m n m+n,0 3 T ,G± =±G± m r m+r C 1 {(cid:2)G+,G−}(cid:3)=2L +(r−s)T + (r2− )δ r s r+s r+s 3 4 r+s,0 [L ,C]=[T ,C]= G±,C =0 m n r {G+r,G+s}={G−r ,G−s}(cid:2)=0 (cid:3) where n,m ∈ Z, but r,s are integers in R-sector and half-integer in NS-sector. The elementC is the centralelementand its eigenvaluec is parametrizedas c = 3(1− 2p), p′ wherep,p′arerelativelyprimepositiveintegers. Itwasobservedin[18,24]thatthereexitsafamilyofouterautomorphismsα :A→A η whichmapstheN =2superconformalalgebrastoitself. Theseareexplicitlygivenby α (G+)=Gˆ+ =G+ η r r r−η α (G−)=Gˆ− =G− η r r r+η (4.1) c α (L )=Lˆ =L −ηT + η2δ η n n n n n,0 6 c α (T )=Tˆ =T − ηδ η n n n n,0 3 Thisfamilyofautomorphismsiscalledspectralflowandη ∈Riscalledtheflowparam- eter. When η ∈ Z each sector of the algebrais mappedto itself. When η ∈ Z+ 1 the 2 Neveu-Schwarzsector is mappedto the Ramond sector and vice-versa. We are going to usethespectralflowη =±1 tomaptheNS-sectortotheR-sector. 2 NON-UNITARYMINIMALMODELS,BAILEY’SLEMMAANDN=1,2SUPERCONFORMALALGEBRAS 9 4.2. Spectralflowandcharacters. WedenotetheVermamodulegeneratedfromahigh- estweightstate |h,Q,ciwith L eigenvalueh, T eigenvalueQ and centralchargec by 0 0 V . Thecharacterχ ofahighestweightrepresentationV isdefinedas h,Q Vh,Q h,Q χ (q,z)=Tr (qL0−c/24zT0). Vh,Q Vh,Q Following[18]thecharactertransformsunderthespectralflowinthefollowingway (4.2) Tr (qLˆ0−c/24zTˆ0)=Tr (qL0−c/24zT0), Vh,Q Vhη,Qη wherehη andQη aretheeigenvaluesofLˆ andTˆ ,respectively,asdefinedin(4.1). This 0 0 means the new character χ (q,z) which is the trace of the transformed operators Vhη,Qη over the original representationequals the character of the representationdefined by the eigenvalueshη andQη ofLˆ andTˆ ,respectively.Sothenewcharacteristhecharacterof 0 0 therepresentationV . hη,Qη For η = 1 the spectral flow α takes a NS-sector character to an R-sector character. 2 12 LetχNS (q,z)beaNS-sectorcharactercorrespondingtotherepresentationV . Then Vh,Q h,Q by(4.2)and(4.1)thenewR-sectorcharacterχR (q,z)isderivedusing Vhη,Qη (4.3) χRVhη,Qη(q,z)=TrVh,Q(qLˆ0−c/24zTˆ0)=TrVh,Q(qL0−21T0+2c4−2c4zT0−6c) =q2c4z−6cTrVh,Q(qL0−2c4(zq−12)T0)=q2c4z−6cχNVhS,Q(q,zq−21). 4.3. R-sectorcharacterfromNS-sectorcharacter. Tosimplifynotationwearegoingto useaslightlydifferentnotationforcharacters. Sinceweareonlydealingwiththevacuum character in the NS-sector for which h = 0,Q = 0, we write χˆNS(q,z). The R-sector p,p′ characterisdenotedbyχˆR (q,z)withthecorresponding(h,Q)specifiedseparately. p,p′ Following [9, 12, 13, 18, 19] the vacuum character for the N = 2 superconformal algebrawithcentralelementc=3(1− 2p)intheNS-sectorisgivenby p′ (4.4) χˆNp,pS′(q,z)=q−c/24 ∞ (1+zqn−(121)−(1q+n)2z−1qn−12) n=1 Y × 1− ∞ qp(n+1)(p′(n+1)−1)+ zqp′n(pn+1)+pn+21 + z−1qp′n(pn+1)+pn+12 (cid:16) nX=0(cid:0) 1+zqp′n+21 1+z−1qp′n+21 (cid:1) + ∞ qpn(p′n+1)+ zqp′n(pn+1)−pn−21 + z−1qp′n(pn+1)−pn−21 . nX=1(cid:0) 1+zqp′n−21 1+z−1qp′n−21 (cid:1)(cid:17) This formula can be verified using the embedding diagram for the vacuum character as describedin[13,18]andcanberewrittenas(aswillbeusefullater) (4.5) χˆNp,pS′(q,z)=q−c/24 ∞ (1+zqn−(121)−(1q+n)2z−1qn−12) n=1 Y × ∞ qpj(p′j+1) 1−q2p′j+1 . j=−∞ (1+zqp′j+12)(1+z−1qp′j+21) X The unitary case p = 1 of these character formulas was given in [11, 20, 21, 23]. In particularifweputz =1in(4.5)weobtainthefollowingformuladerivedin[13] (4.6) χˆNp,pS′(q)=q−c/24n∞=1(1(1+−qnq−n)212)2 j=∞−∞qpj(p′j+1)11−+qqpp′′jj++2211. Y X 10 L.DEKAANDA.SCHILLING Let us apply (4.3) to the NS-sector vacuum character (4.5) to get a Ramond sector character.From(4.1)itfollowsthat 1 c Lˆ =L − T + 0 0 0 2 24 c Tˆ =T − . 0 0 6 ForthevacuumcharacterintheNS-sector(h,Q) = (0,0),sotheneweigenvaluesare (hη,Qη)=( c ,−c)intheR-sector. HencethenewcharacterintheR-sectorcorresponds 24 6 to(hη,Qη)andby(4.3) (4.7) χˆRp,p′(q,z)=q2c4z−c6χˆNp,pS′(q,zq−12) =z−6c(−z)∞((q−)2z−1q)∞ ∞ qpj(p′j+1)(1+zqp1′j−)(1q2+p′jz+−11qp′j+1). ∞ j=−∞ X 4.4. N = 2superconformalcharactersforc = 3(1− 2p). Usingr = 0andb = 1in p′ (2.10)weobtain (4.8) ∞ (ρ ) (ρ ) (aq/ρ ρ )nq−N0,sF(p,p′)(2n+1−s+2x,1;q) 1 n 2 n 1 2 (aq) 0,s n=0 2n X ∞ = (aq/ρ1)∞(aq/ρ2)∞ (ρ1)jp′−x(ρ2)jp′−x (aq/ρ ρ )jp′−x 1 2 (aq)∞(aq/ρ1ρ2)∞ (aq/ρ1)jp′−x(aq/ρ2)jp′−x j=−∞ X − (ρ1)jp′−1−x(ρ2)jp′−1−x (aq/ρ ρ )jp′−1−x qjp(jp′−s). 1 2 (aq/ρ1)jp′−1−x(aq/ρ2)jp′−1−x ! Inthissectionweconsiderthespecialization ρ =finite, ρ =finite. 1 2 Takingthelimit aq −→1in(4.8),wefind ρ1ρ2 (4.9) ∞ (ρ ) (ρ ) q−N0,sF(p,p′)(2n+1−s+2x,1;q) 1 n 2 n(aq) 0,s n=0 2n X = (ρ1)∞(ρ2)∞ ∞ qjp(jp′−s) ρ1ρ2q2(jp′−x−1)−1 . (ρ ρ ) (q) (1−ρ qjp′−x−1)(1−ρ qjp′−x−1) 1 2 ∞ ∞ 1 2 j=−∞ X 4.5. NS-sector characters. Let us set ρ1 = −zqx+21,ρ2 = −z−1qx+21 in (4.9), which impliesa = q2x and s = 1. Making the variable change j −→ −j in (4.9) and setting x=0weobtain (4.10) ∞ (−zq21)n(−z−1q21)nq(−qN)0,1F0(,p1,p′)(2n,1;q) n=0 2n X = (−zq21)∞(−z−1q21)∞ ∞ qjp(jp′+1) 1−q2jp′+1 . (q)2∞ j=−∞ (1+zqjp′+12)(1+z−1qjp′+21) X Comparingwith(4.5),weobtain (4.11) χˆNp,pS′(q,z)=q−2c4−N0,1 ∞ (−zq21)(nq()−z−1q12)nF0(,p1,p′)(2n,1;q). n=0 2n X

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.