NON-TRIVIAL m-QUASI-EINSTEIN METRICS ON QUADRATIC LIE GROUPS ZHIQICHEN,KELIANG,ANDFAHUAIYI Abstract. Wecallametricm-quasi-EinsteinifRicmX (amodification ofthe 5 m-Bakry-EmeryRiccitensorintermsofasuitablevectorfieldX)isaconstant 1 multipleof themetrictensor. Itisageneralization ofEinsteinmetricswhich 0 contains Ricci solitons. In this paper, we focus on left-invariant vector fields 2 andleft-invariantRiemannianmetricsonquadraticLiegroups. Firstweprove that anyleft-invariantvector fieldX suchthat the left-invariantRiemannian n metric on a quadratic Lie group is m-quasi-Einstein is a Killing field. Then u weconstruct infinitely manynon-trivial m-quasi-Einsteinmetrics onsolvable J quadraticLiegroupsG(n)formfinite. 0 3 ] G 1. Introduction D A natural extension of the Ricci tensor is the m-Bakry-EmeryRicci tensor . h 1 at (1.1) Ricmf =Ric+∇2f − mdf ⊗df m where 0<m6 , f is a smooth function on Mn, and 2f stands for the Hessian ∞ ∇ [ form. Instead of a gradient of a smooth function f by a vector field X, m-Bakry- Emery Ricci tensor was extended by Barros and Ribeiro Jr in [3] and Limoncu in 2 v [15] for an arbitrary vector field X on Mn as follows: 2 1 1 2 (1.2) Ricm =Ric+ L g X∗ X∗ 9 X 2 X − m ⊗ 1 where L g denotes the Lie derivative onMn andX∗ denotes the canonical1-form X . associated to X. With this setting (Mn,g) is called an m-quasi-Einstein metric, if 1 0 there exist a vector field X X(Mn) and constants m and λ such that ∈ 4 (1.3) Ricm =λg. 1 X v: Anm-quasi-EinsteinmetriciscalledtrivialwhenX 0. Thetrivialitydefinition ≡ i is equivalent to say that Mn is an Einstein manifold. When m= , the equation X ∞ (1.3) reduces to a Ricci soliton, for more details see [5] and the references therein. r IfmisapositiveintegerandX isagradientvectorfield,theconditioncorresponds a toawarpedproductEinsteinmetric,formoredetailssee[11]. Classicallythestudy on m-quasi-Einstein are considered when X is a gradient of a smooth function f on Mn, see [1, 2, 6, 8, 10, 14]. In this paper, we focus on left-invariant Riemannian metrics on quadratic Lie groups which include compact Lie groups and semisimple Lie groups as special classes. First, we have the following theorem. Theorem 1.1. Let G be a quadratic Lie group with a left-invariant Riemannian metric , and the Lie algebra g of left-invariant vector fields. If X g and Ricm =hλ· ·i, , then X is a Killing field. ∈ X h· ·i 2010 Mathematics Subject Classification. Primary53C25, 53C20,53C21;Secondary17B30. Key words and phrases. m-quasi-Einstein metric, left-invariant metric, quadratic Lie group, quadraticLiealgebra,Killingfield. 1 2 ZHIQICHEN,KELIANG,ANDFAHUAIYI Theorem 1.1 for compact Lie groups is proved in [7], and there are non-trivial m-quasi-Einstein metrics on homogeneous manifolds [4, 7]. Moreover, compact homogeneous Ricci solitons are Einstein, which is equivalent with the conclusion that the vector field is a Killing field, by the work of Petersen-Wylie [18] and Perelman[17]. In [13],Jablonskigivesa new proof. Essentially,Theorem1.1for m infinite holds for semisimple Lie groups by Jablonski’s proof. NextwepayattentiontosolvablequadraticLiegroups. Herewestudyaclassof simplyconnectedsolvablequadraticLiegroupsG(n)forn 1,thederivedalgebras ≥ of whose Lie algebras are Heisenberg Lie algebras of dimension 2n+1, and prove Theorem 1.2. Every solvable quadratic Lie groups G(n) admits infinitely many non-equivalent non-trivial m-quasi-Einstein metrics for m finite. In order to prove Theorem 1.2, we first obtain a formula of the Ricci curvature with respect to a left-invariant Riemannian metric which holds for any quadratic Lie group. It is a natural extension of the formula on compact semisimple Lie groups,which is given by Sagle [19] and simpler provedby D’Atri and Ziller in [9]. Based on it, we get a computable formula of the Ricci curvature on quadratic Lie groups, i.e. Theorem 3.2, which is the fundament of the proof for Theorem 1.2. 2. The proof of Theorem 1.1 A quadratic Lie algebra is a Lie algebra g together with a pseudo-Riemannian metric (, ): g g R that is invariant under the adjoint action, i.e. · · ⊗ → ([X,Y],Z)+(Y,[X,Z])=0 for any X,Y,Z g. ∈ ALiegroupGiscalledaquadraticLiegroupifandonlyiftheLiealgebragofleft- invariant vector fields is a quadratic Lie algebra. It is easy to see that tradX = 0 for any X g, i.e. a quadratic Lie group is unimodular. ∈ Let M denote the set of left-invariant Riemannian metrics on a unimodular Lie groupG. Foranyleft-invariantRiemannianmetricQonG,thetangentspaceT M Q atQisthesetofleft-invariantsymmetric,bilinearformsong. DefineaRiemannian metric on M by (v,w) =tr vw = v(e ,e )w(e ,e ), Q X i i i i i where v,w T M and e is a Q-orthonormalbasis of g. Q i ∈ { } Let G be a unimodular Lie group with a left-invariant Riemannian metric , . h· ·i Given Q M, denote by ric and sc the Ricci and scalar curvatures of (G,Q), Q Q respective∈ly. The gradient of the function sc:M R is → (2.1) (grad sc) = ric Q Q − relative to the above Riemannian metric on M, see [12] or [16]. Assume that , is m-quasi-Einstein. That is, there exists a vector field X on G such that Rich+· ·i1L , 1X∗ X∗ = λ , . In addition, assume that X is 2 Xh i− m ⊗ h· ·i a left-invariant vector field, i.e. X g. Since , is a left-invariant Riemannian ∈ h· ·i metric, for an orthonormalbasis relative to , , we have h· ·i 1 X 2 (2.2) Ric=λId [(adX)+(adX)t]+ | | Pr . X − 2 m | Here Pr is the orthogonalprojection onto RX. X | Lemma 2.1 ([7]). Let Gbe a unimodular Lie group with a left-invariant Riemann- ian metric , and the Lie algebra g. If X g and Ricm = λ , , then X is a h· ·i ∈ X h· ·i Killing field. Since a quadratic Lie group is unimodular, we know that Theorem 1.1 follows from Lemma 2.1. m-QUASI-EINSTEIN METRICS ON QUADRATIC LIE GROUPS 3 3. Ricci curvature on quadratic Lie groups Let , be a left-invariant Riemannian metric on G, i.e. h· ·i Y,Z + Y, Z =0 for any X,Y,Z g. X X h∇ i h ∇ i ∈ In fact, the Levi-Civita connection corresponding to the left-invariant Riemannian metric , is determined by the following equation h· ·i 1 (3.1) Y,Z = [X,Y],Z [Y,Z],X + [Z,X],Y . X h∇ i 2{h i−h i h i} There is a linear map D of g satisfying (X,Y)= X,θ(Y) for any X,Y g. h i ∈ It follows that θ is invertible, and symmetric with respect to , . Since , is h· ·i h· ·i positive definite and(, ) is symmetric, by a resultin linear algebra,we canchoose · · an orthonormal basis X , ,X of g with respect to , such that 1 n { ··· } h· ·i (X ,X )=λ δ , i j i ij for some λ R. Then θ(X )=λ (X ). i i i i ∈ By the equation (3.1) and the ad-invariance of (, ), we have · · 1 Y,Z = [X,Y],Z [Y,Z],X + [Z,X],Y X h∇ i 2{h i−h i h i} 1 = ([X,Y],θ−1Z) ([Y,Z],θ−1X)+([Z,X],θ−1Y) 2{ − } 1 = (θ−1[X,Y],Z) ([θ−1X,Y],Z)+([X,θ−1Y],Z) 2{ − } 1 = θ−1[X,Y] [θ−1X,Y]+[X,θ−1Y],θZ . 2h − i It follows that 1 (3.2) Y = [X,Y] θ[θ−1X,Y]+θ[X,θ−1Y] , X ∇ 2{ − } that is, 1 = adX θad(θ−1X)+θadXθ−1 . X ∇ 2{ − } One has a simple formula of the Ricci curvature on a compact semisimple Lie groupwithrespecttoaleft-invariantmetricwhichwasderivedin[19],andasimpler proof is given in [9]. The proof given in [9] is easily extended to a quadratic Lie group. That is, Lemma 3.1. For any X,Y g, Ric(X,Y)= tr( adX)( adY). X Y ∈ − ∇ − ∇ − Proof. For any X g, we have i ∈ Ric(X,Y) = tr(X Y Y Y) i 7→∇Xi∇X −∇X∇Xi −∇[Xi,X] = tr(∇∇XY −ad(∇XY)−∇X∇Y +∇XadY +∇YadX −adYadX) = tr(∇∇XY)−tr(ad(∇XY))−tr(∇X −adX)(∇Y −adY). By the left-invariance of , , we know that is skew-symmetric with respect x h· ·i ∇ to h·,·i. It follows that tr∇Z =0 for any Z ∈g. In particular, tr∇∇XY =0. Since Gisquadratic,wehavetradX =0foranyX g. Inparticular,tr(ad( Y))=0. X ∈ ∇ Then the theorem follows. (cid:3) Assume that X ,...,X is the above orthonormal basis of g with respect to 1 n { } , , and Ck are the structure constants with respect to the basis. That is, h· ·i ij n [X ,X ]= Cl X . i j X ij l l=1 4 ZHIQICHEN,KELIANG,ANDFAHUAIYI By the ad-invariance of (, ), we have · · (3.3) Cl λ =Ci λ =Cjλ . ij l jl i li j Let µ = 1 . Then we have i λi 1 X = ([X ,X ] θ[θ−1X ,X ]+θ[X ,θ−1X ]) ∇Xi j 2 i j − i j i j 1 = (Id µ θ+µ θ)([X ,X ]) i j i j 2 − n 1 µ µ +µ = l− i jCl X . 2X µ ij l l l=1 Then by Lemma 3.1 and the equation (3.3), we have Ric(X ,X ) = tr( adX )( adX ) j k − ∇Xj − j ∇Xk − k n = ( adX )( adX )X ,X −Xh ∇Xj − j ∇Xk − k i ii i=1 n n 1 µ µ +µ = ( l− k i 1)Cl ( adX )X ,X −Xh{ 2X µ − ki} ∇Xj − j l ii l i=1 l=1 n n 1 µ µ +µ µ µ +µ = − l− k i− i− j lCl Ci −4XX µ µ ki jl l i i=1 l=1 n n 1 µ µ +µ µ µ µ = − l− k i l− j − iCl Cl 4XX µ µ ki ji l l i=1 l=1 Furthermore, by the equation (3.3), we know 1 µ µ +µ µ µ µ − l− k i l− j − iCl Cl 4X µ µ ki ji l l i>l 1 Ci Ci = ( µ µ +µ )(µ µ µ ) kl jl 4X − i− k l i− j − l µ µ i i i<l 1 Cl Cl = ( µ µ +µ )(µ µ µ ) ki ji. 4X − i− k l i− j − l µ µ l l i<l Thus we have the following theorem. Theorem 3.2. Let X ,...,X be as above. Then 1 n { } 1 Cl Cl Ric(X ,X )= ((µ µ )2 µ µ ) ki ji. j k −2X l− i − k j µ µ l l i<l 4. m-quasi-Einstein metrics on G(n) for m finite LetGbeasimplyconnectedLiegroupwiththeLiealgebrag,where D,X,Y,Z { } is a basis of g such that the non-zero brackets are given by (4.1) [D,X]=X,[D,Y]= Y,[X,Y]=Z. − It is easy to check that the symmetric bilinear form on g satisfying (4.2) (D,Z)=(X,Y) is invariant. Thus G is a quadratic Lie group if we take 1 (4.3) (D,Z)=(X,Y)= and other brackets equal to zero. 2 m-QUASI-EINSTEIN METRICS ON QUADRATIC LIE GROUPS 5 Lete =D+Z,e =D Z,e =X+Y ande =X Y. Considertheleft-invariant 1 2 3 4 − − Riemannian metric , on G defined by h· ·i (4.4) e ,e =δ λ2,λ =0, for any i,j =1,2,3,4. h i ji ij i i 6 Let fi = λeii for any 1≤i≤4. Then we have 1 1 1 1 (4.5) f ,f =δ ,(f ,f )= ,(f ,f )= ,(f ,f )= ,(f ,f )= , h i ji ij 1 1 λ2 2 2 −λ2 3 3 λ2 4 4 −λ2 1 2 3 4 and the non-zero structure constants corresponding to the basis f are i i=1,2,3,4 { } (4.6) λ λ λ λ λ λ C4 = 4 ,C4 = 4 ,C3 = 3 ,C3 = 3 ,C2 = 2 ,C1 = 1 . 13 λ λ 23 λ λ 14 λ λ 24 λ λ 34 λ λ 34 −λ λ 1 3 2 3 1 4 2 4 3 4 3 4 Any left-invariant Killing vector field with respect to , is of the form h· ·i (4.7) a(λ f λ f ). 1 1 2 2 − By Theorem 3.2, the Ricci curvatures are given by Ric(f ,f )=Ric(f ,f )=Ric(f ,f )=Ric(f ,f )=Ric(f ,f )=0, 1 3 1 4 2 3 2 4 3 4 1 1 RRRiiiccc(((fff11,,,fff12)))===−−1122((((((λλλ23232+++λλλ24242)))222+−λλλ21414λ))λ22)21λλ11231λλ242λ,,23λ24, 2 2 −2 3 4 − 2 λ2λ2λ2 2 3 4 RRiicc((ff43,,ff43))==−−1122((((λλ2121+−λλ2423))22−−λλ4344))λλ2121λλ112323λλ2424 −− 2211((((λλ2222−+λλ2423))22−−λλ4344))λλ2222λλ112323λλ2424,. Assume that , is m-quasi-Einsteinfor some X g. Then by Theorem 1.1, X is h· ·i ∈ a left-invariant Killing vector field with respect to , . That is, h· ·i (4.8) X =a(λ f λ f ) for some a. 1 1 2 2 − Thus , is m-quasi-Einstein with the constant λ and a = 1 if and only if the h· ·i following equations holds, i.e. 1 1 λ λ − 2((λ23+λ24)2+λ21λ22)λ λ λ2λ2 + 1m2 =0, −− 2211((((λλ2323++λλ2424))22−−λλ4142))λλ212λλ111232λλ2242 −−3 λλmm42122 ==λλ,, 2 3 4 −− 2211((((λλ2121+−λλ2423))22−−λλ4344))λλ2121λλ112323λλ2424 −− 2211((((λλ2222−+λλ2423))22−−λλ4344))λλ2222λλ112323λλ2424 ==λλ,. By the first equation, we can represent m by λ . Put the representation i i=1,2,3,4 { } of m into the second and third equations, and then eliminate λ. Finally we have (4.9) λ2 =λ2 and λ2λ2 =4λ4. 3 4 1 2 4 It is easy to check that λ satisfying the equations (4.9) are the solutions i i=1,2,3,4 { } of the above equations. On the other hand, non-zero λ satisfying the i i=1,2,3,4 { } equations (4.9) give an m-quasi-Einstein metric on G. 6 ZHIQICHEN,KELIANG,ANDFAHUAIYI Fortheabovecase,[g,g]istheHeisenbergLiealgebraofdimension3. Motivated by the above example, we try to give examples when [g,g] is the Heisenberg Lie algebra of higher dimension. Let G(n) be a simply connected Lie group with the Lie algebra g(n), where D,X ,Y ,Z is a basis of g(n) such that non-zero brackets are given by s s s=1,...,n { } (4.10) [D,X ]=a X ,[D,Y ]= a Y ,[X ,Y ]=Z. s s s s s s s s − We can assume that 0<a a ... a by adjusting the order and the sign of 1 2 n ≤ ≤ ≤ the basis if necessary. It is easy to check that the symmetric bilinear form on g(n) satisfying (4.11) (D,Z)=a (X ,Y ) for any s=1,2,...,n s s s is ad-invariant. Thus G is a quadratic Lie group if we take 1 (4.12) (D,Z)=a (X ,Y )= for any s and other brackets equal to zero. s s s 2 Let e1 =D+Z, e2 =D Z, e2s+1 =√as(Xs+Ys) and e2s+2 =√as(Xs Ys) for − − any1 s n. Considertheleft-invariantRiemannianmetric , onG(n)defined ≤ ≤ h· ·i by (4.13) e ,e =δ λ2,λ =0, for any i,j =1,2,...,2n+2. h i ji ij i i 6 Let fi = λeii for any 1≤i≤2n+2. Then we have 1 1 (4.14) f ,f =δ ,(f ,f )= ,(f ,f )= , 0 s n h i ji ij 2s+1 2s+1 λ2 2s+2 2s+2 −λ2 ∀ ≤ ≤ 2s+1 2s+2 and the non-zerostructure constants correspondingto the basis f are i i=1,...,2n+2 { } a λ a λ (4.15) C2s+2 = s 2s+2,C2s+2 = s 2s+2 1(2s+1) λ λ 2(2s+1) λ λ 1 2s+1 2 2s+1 a λ a λ (4.16) C2s+1 = s 2s+1 ,C2s+1 = s 2s+1 1(2s+2) λ λ 2(2s+2) λ λ 1 (2s+2) 2 (2s+2) a λ a λ (4.17) C2 = s 2 ,C1 = s 1 . (2s+1)(2s+2) λ λ (2s+1)(2s+2) −λ λ 2s+1 2s+2 2s+1 2s+2 Any left-invariant Killing vector field with respect to , is of the form h· ·i (4.18) a(λ f λ f ). 1 1 2 2 − By Theorem 3.2, Ric(f ,f )=0 except i=j or (i,j)=(1,2). Furthermore, i j n 1 a2 Ric(f ,f )= ((λ2 +λ2 )2+λ2λ2) s , Ric(f11,f12)=XXs=n1−−221((λ222ss++11+λ222ss++22)2−λ141)λ22λλ21λa22sλλ222s+1λ,22s+2 s=1 1 2s+1 2s+2 Ric(f2,f2)=Xs=n1−21((λ22s+1+λ22s+2)2−λ42)λ22λ22s+a2s1λ22s+2, m-QUASI-EINSTEIN METRICS ON QUADRATIC LIE GROUPS 7 and for any 1 s n, ≤ ≤ 1 a2 Ric(f ,f )= ((λ2+λ2 )2 λ4 ) s 2s+1 2s+1 −−1221((λ221−λ222ss++22)2−−λ422ss++11)λλ2221λλ2222ss+a+a2s121λλ2222ss++22, Ric(f ,f )= ((λ2 λ2 )2 λ4 ) s 2s+2 2s+2 −−122((λ221+−λ222ss++11)2−−λ422ss++22)λλ2221λλ2222ss+a+2s11λλ2222ss++22. Assume that , is m-quasi-Einstein for some X g(n). By Theorem 1.1, X is a h· ·i ∈ left-invariant Killing vector field with respect to , . That is, h· ·i (4.19) X =a(λ f λ f ) for some a. 1 1 2 2 − Assume that , is m-quasi-Einsteinwiththe constantλ anda=1. Thenfor any h· ·i 1 s n, Ric(f ,f )=Ric(f ,f ). It follows that 2s+1 2s+1 2s+2 2s+2 ≤ ≤ (4.20) λ2 =λ2 . 2s+1 2s+2 For any 1 i=j n, since Ric(f ,f )=Ric(f ,f ), we have 2i+1 2i+1 2j+1 2j+1 ≤ 6 ≤ λ2 λ2 (4.21) 2i+1 = 2j+1. a a i j By the first equation, we can represent m by λ , and then put the i i=1,...,2n+2 representation of m into Ricm(f ,f ) and Ricm({f ,}f ). It is easy to check that X 1 1 X 2 2 Ricm(f ,f )=Ricm(f ,f ). X 1 1 X 2 2 Since Ricm(f ,f )=Ricm(f ,f ), we have X 1 1 X 3 3 4 n a2 (4.22) λ2λ2 = Ps=1 sλ4. 1 2 a2 3 1 It is easy to check that λ satisfying the equations (4.20), (4.21) and i i=1,...,2n+2 { } (4.22) are the solutions. Onthe other hand, non-zero λ satisfying the i i=1,...,2n+2 { } equations (4.20), (4.21) and (4.22) give an m-quasi-Einstein metric on G(n). It is easy to check that 2 a2 (4.23) S = Ric(f ,f )= n(λ2+λ2)( + 1 ). X i i − 1 2 λ2λ2 2λ4 i 1 2 3 Withrespecttotheorthonormalbasis f ,thedeterminantofthemetric i i=1,...,2n+2 { } matrix with respect to , is 1. Take λ = c = 0. Then by the equation (4.22), 3 h· ·i 6 λ2λ2 is a constant. It follows that S is based on the choice of λ2 and λ2. That 1 2 1 2 is,G(n)admitsinfinitelymanynon-equivalentnon-trivialm-quasi-Einsteinmetrics for m finite, i.e. Theorem 1.2 holds. 5. Acknowledgments This workis supportedby NSFC (No. 11001133,No. 11271143,No. 11371155), andUniversitySpecialResearchFundforPh.D.ProgramofChina(20124407110001 and 20114407120008). We would like to thank F.H. Zhu for the helpful comments, conversationand suggestions. 8 ZHIQICHEN,KELIANG,ANDFAHUAIYI References [1] M.Anderson,Scalarcurvature,metricdegenerations andthestaticvacuum Einsteinequa- tionson3-manifolds,Geom. Funct. Anal.9(1999), 855–967. [2] M. Anderson and M. Khuri, The static extension problem in General relativity, arXiv: 0909.4550v1 [math.DG],2009. [3] A. Barros and E. Ribeiro Jr, Integral formulae on quasi-Einstein manifolds and applica- tions,Glasgow Math. J.54(2012), 213–223. [4] A. Barros, E. Ribeiro Jr and S. Joa˜o, Uniqueness of quasi-Einstein metrics on 3- dimensionalhomogenous manifolds,DifferentialGeom. Appl.35(2014), 60–73. [5] H.D. Cao,Recent progressonRiccisoliton,Adv. Lect. Math. (ALM),11(2009), 1–38. [6] J.Case,Y.ShuandG.Wei,Rigityofquasi-Einsteinmetrics,DifferentialGeom. Appl.,29 (2011), 93–100. [7] Z. Chen,K. LiangandF. Zhu,Non-trivialm-quasi-EinsteinmetricsonsimpleLiegroups, Ann. Mat. Pura. Appl.,2015,doi:10.1007/s10231-015-0506-y. [8] J. Corvino, Scalar curvature deformations and a gluing construction for the Einstein con- straintequations,Comm. Math. Phys.214(2000), 137–189. [9] J.E. D’Atri and W. Ziller, Naturally reductive metrics and Einstein metrics on compact Liegroups,Memoirs of Amer. Math. Soc.215(1979). [10] M.Eminenti,G.La NaveandC.Mantegazza,Riccisolitons: theequationpointofview, Manuscripta Math.127(2008), 345–367. [11] C.He,P.PetersenandW.Wylie,OntheclassificationofwarpedproductEinsteinmetrics, Commun. Anal. Geom.20(2012), 271–312. [12] J.Heber,NoncompacthomogeneousEinsteinspaces,Invent.Math.133(1998),no.2,279– 352. [13] M.Jablonski,Homogeneous Riccisolitons,J. Reine Angew. Math.699(2015), 159–182. [14] D.S. Kim and Y.H. Kim, Compact Einstein warped product spaces with nonpositive scalar curvature,Proc. Amer. Math. Soc.131(2003), 2573–2576. [15] M. Limoncu, Modifications of the Ricci tensor and applications, Arch. Math. 95 (2010), 191–199. [16] Yu.G. Nikonorov, The scalar curvature functional and homogeneous Einstein metrics on Liegroups,Sibirsk. Mat. Zh.39(1998), no.3,583–589. [17] G.Perelman,TheentropyformulafortheRicciflowanditsgeometricapplications,Prerpint, arXivmath/0211159,2002. [18] P.PetersenandW.Wylie,OngradientRiccisolitonswithsymmetry,Proc. Amer.Math. Soc.137(2009), no.6,2085–2092. [19] A.Sagle,Somehomogenous Einsteinmanifolds,Nogaya Math. J.39(1970), 81–106. SchoolofMathematicalSciencesandLPMC,NankaiUniversity,Tianjin300071,P.R. China E-mail address: [email protected] SchoolofMathematicalSciencesandLPMC,NankaiUniversity,Tianjin300071,P.R. China E-mail address: [email protected] SchoolofMathematicalSciences,SouthChinaNormalUniversity,Guangzhou510631, P.R. China E-mail address: [email protected]