ebook img

Non-Traditional Stable Isotopes PDF

857 Pages·2017·24.201 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Non-Traditional Stable Isotopes

REVIEWS in MINERALOGY & GEOCHEMISTRY geochemical Volume 82 society NON-TRADITIONAL STABLE ISOTOPES EDITORS: Fang-Zhen Teng, James M. Watkins and Nicolas Dauphas MINERALOGICAL SOCIETY OF AMERICA GEOCHEMICAL SOCIETY Series Editor: Ian P. Swainson 2017 ISSN 1529-6466 REVIEWS IN MINERALOGY AND GEOCHEMISTRY Volume 82 2017 Non-Traditional Stable Isotopes EDITORS Fang-Zhen Teng University of Washington, USA James Watkins University of Oregon, USA Nicolas Dauphas The University of Chicago, USA Front-cover: False-color image of a zoned olivine phenocryst (forsterite content) from the Kilauea Iki lava lake, Hawaii. The black marks are spots where the Fe isotopic composition of the olivine was measured by LA-MC-ICPMS and SIMS (Sio et al. 2013, Geochimica et Cosmochimica Acta 123, 302–321). In situ stable isotopic analyses of zoned minerals allow one to tell apart zoning produced by diffusion from zoning produced by growth from an evolving medium. Series Editor: Ian Swainson MINERALOGICAL SOCIETY OF AMERICA GEOCHEMICAL SOCIETY Reviews in Mineralogy and Geochemistry, Volume 82 Non-Traditional Stable Isotopes ISSN 1529-6466 ISBN 978-0-939950-98-0 Copyright 2017 The MINERALOGICAL SOCIETY of AMERICA 3635 Concorde Parkway, Suite 500 Chantilly, Virginia, 20151-1125, U.S.A. www.minsocam.org The appearance of the code at the bottom of the first page of each chapter in this volume indicates the copyright owner’s consent that copies of the article can be made for personal use or internal use or for the personal use or internal use of specific clients, provided the original publication is cited. The consent is given on the condition, however, that the copier pay the stated per-copy fee through the Copyright Clearance Center, Inc. for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other types of copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. For permission to reprint entire articles in these cases and the like, consult the Administrator of the Mineralogical Society of America as to the royalty due to the Society. Non-Traditional Stable Isotopes 82 Reviews in Mineralogy and Geochemistry 82 FROM THE SERIES EDITOR It has been a pleasure working with the volume editors and authors on this 82nd volume of Reviews in Mineralogy and Geochemistry. Several chapters have associated supplemental figures and or tables that can be found at the MSA website. Any future errata will also be posted there. Ian P. Swainson, Series Editor Vienna, Austria PREFACE Since the publication of Geochemistry of Non-Traditional Stable Isotopes in 2004 (volume 55 of Reviews in Mineralogy and Geochemistry), analytical techniques have significantly improved and new research directions have emerged in non-traditional stable isotope geochemistry. Our goal here is to review the current status of non-traditional isotope geochemistry from analytical, theoretical, and experimental approaches to analysis of natural samples. In particular, important applications to cosmochemistry, high-temperature geochemistry, low-temperature geochemistry, and geobiology are discussed. The aim of this volume is to provide the most comprehensive review on non-traditional isotope geochemistry for students and researchers who are interested in both the theory and applications of non-traditional stable isotope geochemistry. We take this opportunity to thank the timely contributions by authors of the individual chapters and insightful reviews from the following scientists: Bridget Bergquist, Greg Brennecka, Christopher Cloquet, Hans Eggenkamp, Toshiyuki Fujii, Sarah Gleeson, Doug Hammond, Adrianna Heimann, Richard Hervig, Fang Huang, Timm John, Tom Johnson, Abby Kavner, James Kubicki, Laura Lammers, Sheng-Ao Liu, Catherine Macris, Paul Mason, Ryan Mathur, Vasileios Mavromatis, Fred Moynier, Kazuhide Nagashima, Philip Pogge Von Strandmann, Martin Oeser, Noah Planavsky, Franck Poitrasson, John Reinfelder, Stephen Romaniello, Mathieu Roskosz, Kate Scheiderich, Kathrin Schilling, Laura Sherman, Haolan Tang, Francois Tissot, Paul Tomascak, Martin Tsz-Ki Tsui, Jim Van Orman, Xiangli Wang, Laura Wasylenki, Dominik Weiss, Stefan Weyer, Jan Wiederhold, Martin Wille, Josh Wimpenny, Wei Yang, Karen Ziegler, and many anonymous reviewers. We gratefully acknowledge the help from Don DePaolo, Valarie Espinoza-Ross, and Kryshna Avina in organizing and hosting the workshop at LBNL. We are also indebted to Ian Swainson, series editor, for all his work in producing this volume, and Alex Speer at the MSA business office, for help in the preparation of the volume and management of registrations and donations. We also thank Matt Kohn and Youxue Zhang for sharing their experience in preparing a volume and workshop. Finally, the financial support provided by Nu Instruments, Cameca and Ametek, Elemental Scientific, Geochemical Society, Savillex, Depths of the Earth, and Thermo-Fisher are highly appreciated. Fang-Zhen Teng, Seattle, Washington James Watkins, Eugene, Oregon Nicolas Dauphas, Chicago, Illinois November 2016 1529-6466/17/0082-0000$00.00 http://dx.doi.org/10.2138/rmg.2017.82.0 Non-Traditional Stable Isotopes 82 Reviews in Mineralogy and Geochemistry 82 FROM THE SERIES EDITOR It has been a pleasure working with the volume editors and authors on this 82nd volume of Reviews in Mineralogy and Geochemistry. Several chapters have associated supplemental figures and or tables that can be found at the MSA website. Any future errata will also be posted there. Ian P. Swainson, Series Editor Vienna, Austria PREFACE Since the publication of Geochemistry of Non-Traditional Stable Isotopes in 2004 (volume 55 of Reviews in Mineralogy and Geochemistry), analytical techniques have significantly improved and new research directions have emerged in non-traditional stable isotope geochemistry. Our goal here is to review the current status of non-traditional isotope geochemistry from analytical, theoretical, and experimental approaches to analysis of natural samples. In particular, important applications to cosmochemistry, high-temperature geochemistry, low-temperature geochemistry, and geobiology are discussed. The aim of this volume is to provide the most comprehensive review on non-traditional isotope geochemistry for students and researchers who are interested in both the theory and applications of non-traditional stable isotope geochemistry. We take this opportunity to thank the timely contributions by authors of the individual chapters and insightful reviews from the following scientists: Bridget Bergquist, Greg Brennecka, Christopher Cloquet, Hans Eggenkamp, Toshiyuki Fujii, Sarah Gleeson, Doug Hammond, Adrianna Heimann, Richard Hervig, Fang Huang, Timm John, Tom Johnson, Abby Kavner, James Kubicki, Laura Lammers, Sheng-Ao Liu, Catherine Macris, Paul Mason, Ryan Mathur, Vasileios Mavromatis, Fred Moynier, Kazuhide Nagashima, Philip Pogge Von Strandmann, Martin Oeser, Noah Planavsky, Franck Poitrasson, John Reinfelder, Stephen Romaniello, Mathieu Roskosz, Kate Scheiderich, Kathrin Schilling, Laura Sherman, Haolan Tang, Francois Tissot, Paul Tomascak, Martin Tsz-Ki Tsui, Jim Van Orman, Xiangli Wang, Laura Wasylenki, Dominik Weiss, Stefan Weyer, Jan Wiederhold, Martin Wille, Josh Wimpenny, Wei Yang, Karen Ziegler, and many anonymous reviewers. We gratefully acknowledge the help from Don DePaolo, Valarie Espinoza-Ross, and Kryshna Avina in organizing and hosting the workshop at LBNL. We are also indebted to Ian Swainson, series editor, for all his work in producing this volume, and Alex Speer at the MSA business office, for help in the preparation of the volume and management of registrations and donations. We also thank Matt Kohn and Youxue Zhang for sharing their experience in preparing a volume and workshop. Finally, the financial support provided by Nu Instruments, Cameca and Ametek, Elemental Scientific, Geochemical Society, Savillex, Depths of the Earth, and Thermo-Fisher are highly appreciated. Fang-Zhen Teng, Seattle, Washington James Watkins, Eugene, Oregon Nicolas Dauphas, Chicago, Illinois November 2016 1529-6466/17/0082-0000$00.00 http://dx.doi.org/10.2138/rmg.2017.82.0 Non-Traditional Stable Isotopes 82 Reviews in Mineralogy and Geochemistry 82 TABLE OF CONTENTS 1 Non-Traditional Stable Isotopes: Retrospective and Prospective Fang-Zhen Teng, Nicolas Dauphas, James M. Watkins INTRODUCTION ....................................................................................................................1 THE (cid:71) NOTATION .................................................................................................................3 GUIDELINES FOR SELECTING REFERENCE MATERIALS ............................................4 EMERGING ISOTOPE SYSTEMS .........................................................................................6 Stable potassium isotope geochemistry .........................................................................7 Titanium isotope geochemistry .....................................................................................8 Vanadium isotope geochemistry ..................................................................................10 Stable rubidium isotope geochemistry ........................................................................11 Stable strontium isotope geochemistry ........................................................................11 Cadmium isotope geochemistry ..................................................................................13 Tin isotope geochemistry.............................................................................................15 Antimony isotope geochemistry ..................................................................................15 Stable tellurium isotope geochemistry ........................................................................16 Barium isotope geochemistry ......................................................................................16 Stable neodymium isotope geochemistry ....................................................................18 CONCLUSIONS .....................................................................................................................20 ACKNOWLEDGMENTS .......................................................................................................20 REFERENCES .......................................................................................................................20 2 Equilibrium Fractionation of Non-traditional Isotopes: a Molecular Modeling Perspective Marc Blanchard, Etienne Balan, Edwin A. Schauble INTRODUCTION ..................................................................................................................27 THEORETICAL FRAMEWORK ..........................................................................................28 Equilibrium fractionation theory .................................................................................28 Approximate formula based on force constants ..........................................................33 MODELING APPROACHES .................................................................................................35 Quantum-mechanical molecular modeling..................................................................35 Theoretical studies of non-traditional stable isotope fractionation .............................37 iv Non-Traditional Stable Isotopes(cid:561)(cid:561)(cid:557)(cid:561)(cid:561)(cid:22)(cid:138)(cid:139)(cid:149)(cid:142)(cid:561)(cid:152)(cid:143)(cid:561)(cid:5)(cid:152)(cid:151)(cid:157)(cid:142)(cid:151)(cid:157)(cid:156) Modeling isotopic properties of liquid phases.............................................................40 Beyond harmonic approximation: Path integral molecular dynamics .........................43 MÖSSBAUER AND NRIXS SPECTROSCOPY ...................................................................45 MASS-INDEPENDENT FRACTIONATION AND VARIATIONS IN MASS LAWS...................................................................................47 Variability in mass laws for common fractionations ...................................................48 Mass-independent fractionation in light elements (O and S) ......................................50 Mass-independent fractionation in non-traditional elements (Hg, Tl, and U) ............50 Mass-independent fractionation signatures in heavy elements, versus light elements ................................................................................................53 Ab initio methods for calculating field shift fractionation factors ...............................53 Isomer shifts from Mössbauer spectroscopy ...............................................................55 CONCLUSIONS .....................................................................................................................55 ACKNOWLEDGMENTS .......................................................................................................56 REFERENCES .......................................................................................................................56 3 Equilibrium Fractionation of Non-Traditional Stable Isotopes: an Experimental Perspective Anat Shahar, Stephen M. Elardo, Catherine A. Macris INTRODUCTION ..................................................................................................................65 FACTORS INFLUENCING EQUILIBRIUM FRACTIONATION FACTORS .....................66 PROOF OF EQUILIBRIUM IN ISOTOPE EXPERIMENTS ...............................................67 Time series ...................................................................................................................67 Multi-direction approach .............................................................................................68 Three-isotope exchange method ..................................................................................69 Kinetic effects ..............................................................................................................72 EXPERIMENTAL METHODS ..............................................................................................73 Low temperature experiments .....................................................................................73 High temperature, low pressure experiments ..............................................................74 High temperature and pressure experiments ...............................................................76 NRIXS and diamond anvil cell experiments ...............................................................78 POST-EXPERIMENT ANALYSIS ........................................................................................80 CONCLUSIONS .....................................................................................................................80 ACKNOWLEDGMENTS .......................................................................................................81 REFERENCES .......................................................................................................................81 4 Kinetic Fractionation of Non-Traditional Stable Isotopes by Diffusion and Crystal Growth Reactions James M. Watkins, Donald J. DePaolo, E. Bruce Watson INTRODUCTION ..................................................................................................................85 Organization of the article ...........................................................................................86 ISOTOPE FRACTIONATION BY DIFFUSION ...................................................................86 Expressions for diffusive fluxes ...................................................................................87 Isotopic mass dependence of diffusion in “simple” systems .......................................87 Isotopic mass dependence of diffusion in aqueous solution .......................................88 v Non-Traditional Stable Isotopes(cid:561)(cid:557)(cid:561)(cid:561)(cid:22)(cid:138)(cid:139)(cid:149)(cid:142)(cid:561)(cid:152)(cid:143)(cid:561)(cid:5)(cid:152)(cid:151)(cid:157)(cid:142)(cid:151)(cid:157)(cid:156) Isotopic mass dependence of diffusion in silicate melts .............................................90 Isotopic mass dependence of diffusion in minerals and metals...................................92 DIFFUSIVE BOUNDARY LAYERS IN THE GROWTH MEDIUM ...................................94 ISOTOPE FRACTIONATION BY COMBINED REACTION AND DIFFUSION ............102 General framework for crystal growth from an infinite solution ...............................102 Crystal growth and kinetic isotope effects ................................................................105 Interpreting the model parameters .............................................................................107 Stable isotope fractionation during electroplating .....................................................110 Stable isotope fractionation of trace elements ...........................................................113 THE ROLE OF THE NEAR SURFACE OF CRYSTALS ...................................................115 The growth entrapment model (GEM) ......................................................................116 The surface reaction kinetic model (SRKM), growth entrapment model (GEM), and isotopes ............................................................................................................118 PERSPECTIVES ..................................................................................................................120 ACKNOWLEDGMENTS .....................................................................................................121 REFERENCES .....................................................................................................................121 5 In Situ Analysis of Non-Traditional Isotopes by SIMS and LA–MC–ICP–MS: Key Aspects and the Example of Mg Isotopes in Olivines and Silicate Glasses Marc Chaussidon, Zhengbin Deng, Johan Villeneuve, Julien Moureau, Bruce Watson, Frank Richter, Frédéric Moynier INTRODUCTION ................................................................................................................127 Notations used for Mg isotopes .................................................................................128 INSTRUMENTATION FOR IN-SITU STABLE ISOTOPE ANALYSIS ............................128 MC–SIMS analysis ....................................................................................................129 LA–MC–ICP–MS analysis ........................................................................................129 LIMITATIONS FOR IN-SITU STABLE ISOTOPES ANALYSIS ......................................130 Limitations due to the small amount of sample analyzed .........................................131 Limitations due to matrix effects on ion yield ...........................................................131 Limitations due to instrumental isotopic fractionation ..............................................133 STANDARDS AND ANALYTICAL APPROACH USED FOR MG IN THE PRESENT STUDY .................................................................................................136 Set of standards studied .............................................................................................136 MC–SIMS for Mg isotopic analysis ..........................................................................137 LA–MC–ICP–MS for Mg isotopic analysis ..............................................................138 Solution MC–ICP–MS for Mg isotopic analysis ......................................................138 MAGNESIUM ION EMISSION DURING IN SITU ANALYSIS ......................................140 Fundamental differences for Mg ion yield between SIMS and laser ablation ICP–MS ............................................................................................140 Possible origin of the complex matrix effects on ion yield for SIMS ......................143 MAGNESIUM INSTRUMENTAL ISOTOPIC FRACTIONATION ...................................145 Similarities and differences for Mg instrumental isotopic fractionation between SIMS and laser ablation ICP–MS ............................................................145 Matrix effects during ionization of solutions in MC–ICP–MS ................................147 Matrix effects specific to in situ analysis ..................................................................149 MEASUREMENT OF THE THREE MAGNESIUM ISOTOPES.......................................152 vi Non-Traditional Stable Isotopes(cid:561)(cid:561)(cid:557)(cid:561)(cid:561)(cid:22)(cid:138)(cid:139)(cid:149)(cid:142)(cid:561)(cid:152)(cid:143)(cid:561)(cid:5)(cid:152)(cid:151)(cid:157)(cid:142)(cid:151)(cid:157)(cid:156) The need for high-precision in situ three Mg isotopes analysis in cosmochemistry .152 The question of potential isobaric interferences ........................................................153 The question of the mass fractionation law used to correct for instrumental isotopic fractionation ..............................................................................................154 Mg instrumental mass fractionation law for MC–SIMS analyses .............................155 Mg instrumental mass fractionation law for LA–MC–ICP–MS analyses .................158 SUMMARY AND PERSPECTIVES ...................................................................................158 ACKNOWLEDGMENTS .....................................................................................................159 REFERENCES .....................................................................................................................159 6 Lithium Isotope Geochemistry Sarah Penniston-Dorland,, Xiao-Ming Liu, Roberta L. Rudnick INTRODUCTION ................................................................................................................165 LITHIUM SYSTEMATICS ..................................................................................................167 Li in minerals .............................................................................................................168 Li partitioning ............................................................................................................168 Equilibrium Isotope Fractionation .............................................................................170 Diffusion and kinetic isotopic fractionation ..............................................................174 METHODS ...........................................................................................................................176 Whole rock analyses ..................................................................................................176 In situ analyses ..........................................................................................................177 EXTRATERRESTRIAL LITHIUM RESERVOIRS ............................................................178 The interstellar medium and the Sun .........................................................................178 Meteorites and their components...............................................................................179 Moon .........................................................................................................................181 TERRESTRIAL LITHIUM RESERVOIRS .........................................................................181 Mantle peridotites ......................................................................................................181 Basalts .......................................................................................................................188 Arc lavas ....................................................................................................................190 Continental crust ........................................................................................................191 Seawater ....................................................................................................................192 Rivers .........................................................................................................................193 Lakes..........................................................................................................................193 Groundwater ..............................................................................................................194 Hydrothermal fluids ...................................................................................................194 IGNEOUS PROCESSES ......................................................................................................195 Differentiation ...........................................................................................................195 Eruptive processes .....................................................................................................196 METAMORPHIC PROCESSES...........................................................................................197 Dehydration ...............................................................................................................197 Redistribution of Li through fluid infiltration ............................................................198 Diffusion ....................................................................................................................199 CONTINENTAL WEATHERING PROCESSES .................................................................199 Weathering profiles ....................................................................................................201 Rivers .........................................................................................................................201 LITHIUM AS A TRACER OF CONTINENTAL WEATHERING THROUGH TIME..............................................................................................................204 vii Non-Traditional Stable Isotopes(cid:561)(cid:557)(cid:561)(cid:561)(cid:22)(cid:138)(cid:139)(cid:149)(cid:142)(cid:561)(cid:152)(cid:143)(cid:561)(cid:5)(cid:152)(cid:151)(cid:157)(cid:142)(cid:151)(cid:157)(cid:156) FUTURE DIRECTIONS ......................................................................................................205 Weathering processes and Li fractionation experiments ...........................................205 Continental weathering through time ........................................................................205 Geospeedometry ........................................................................................................206 ACKNOWLEDGMENTS .....................................................................................................206 REFERENCES .....................................................................................................................206 7 Magnesium Isotope Geochemistry Fang-Zhen Teng INTRODUCTION ................................................................................................................219 MAGNESIUM ISOTOPIC ANALYSIS ...............................................................................221 Nomenclature ............................................................................................................221 Standard and reference materials...............................................................................222 Instrumental Analysis ................................................................................................229 Sample preparation ....................................................................................................229 MAGNESIUM ISOTOPIC SYSTEMATICS OF EXTRATERRESTRIAL RESERVOIRS .....................................................................230 Magnesium isotopic composition of chondrites ........................................................231 Magnesium isotopic composition of differentiated meteorites .................................232 Magnesium isotopic composition of the Moon .........................................................232 MAGNESIUM ISOTOPIC SYSTEMATICS OF THE MANTLE .......................................234 Mantle xenoliths ........................................................................................................234 Oceanic basalts ..........................................................................................................236 Abyssal peridotites and ophiolites .............................................................................237 Continental basalts ....................................................................................................239 MAGNESIUM ISOTOPIC SYSTEMATICS OF THE OCEANIC CRUST, CONTINENTAL CRUST AND HYDROSPHERE ...........................................................241 Magnesium isotopic composition of the oceanic crust..............................................241 Magnesium isotopic composition of the continental crust ........................................243 Magnesium isotopic composition of the hydrosphere ...............................................247 MAGNESIUM ISOTOPIC SYSTEMATICS OF CARBONATES ......................................250 Abiogenic carbonates ................................................................................................250 Biogenic carbonates...................................................................................................254 Carbonate precipitation experiments and theoretical calculations ............................255 BEHAVIOR OF MAGNESIUM ISOTOPES DURING MAJOR GEOLOGICAL PROCESSES ............................................................256 Behavior of Mg isotopes during biological processes ...............................................256 Behavior of Mg isotopes during continental weathering ..........................................257 Behavior of Mg isotopes during magmatic differentiation .......................................263 Behaviors of Mg isotopes during metamorphic dehydration ....................................264 HIGH-TEMPERATURE MAGNESIUM ISOTOPE FRACTIONATION ...........................267 High-temperature equilibrium inter-mineral Mg isotope fractionation .....................267 Diffusion-driven kinetic Mg isotope fractionation ....................................................270 APPLICATIONS AND FUTURE DIRECTIONS ................................................................276 ACKNOWLEDGMENTS .....................................................................................................278 REFERENCES .....................................................................................................................278 viii

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.