ebook img

Non-relativistic particles in a thermal bath PDF

0.17 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Non-relativistic particles in a thermal bath

EPJWebofConferenceswillbesetbythepublisher DOI:willbesetbythepublisher c Ownedbytheauthors,publishedbyEDPSciences,2014 (cid:13) 4 1 0 2 Non-relativistic particles in a thermal bath n a J 4 AntonioVairoa 1 1Physik-Department,TechnischeUniversitätMünchen, James-Franck-Str.1,85748Garching,Germany ] h p Abstract.Heavyparticlesareawindowtonewphysicsandnewphenomena. Sincethe - p late eighties they are treated by means of effective field theories that fully exploit the e symmetriesandpowercountingtypicalofnon-relativisticsystems. Morerecentlythese h effectivefieldtheorieshavebeenextendedtodescribenon-relativisticparticlespropagat- [ inginamedium.Afterintroducingsomegeneralfeaturescommontoanynon-relativistic 1 effectivefieldtheory,wediscusstwospecificexamples: heavyMajorananeutrinoscol- v lidinginahot plasmaof StandardModel particlesintheearlyuniverseand quarkonia 4 producedinheavy-ioncollisionsdissociatinginaquark-gluonplasma. 0 2 3 1. 1 Introduction 0 4 Heavyparticlesareawindowtonewphysicsfortheymaybesensitivetonewfundamentaldegreesof 1 freedom.Someofthesenewdegreesoffreedommaybethemselvesheavyparticles(like,forinstance, : v the heavy neutrinosthat we will discuss in section 2). Heavy particles can also be clean probes of i new phenomena emerging in particularly complex environments. Examples are heavy quarks and X quarkoniaasprobesofthestateofmatterformedinheavy-ioncollisions. r WecallaparticleheavyifitsmassMismuchlargerthananyotherscaleEcharacterizingthesys- a tem. ThescaleE mayincludethespatialmomentumoftheheavyparticle,massesofotherparticles, Λ , symmetry breaking scales, the temperature T of the medium and any other energy or mo- QCD mentumscale thatdescribestheheavyparticleanditsenvironment. Underthisconditiontheheavy particleisalsononrelativistic. ThehierarchyM Ecallsforalowenergydescriptionofthesystem ≫ intermsofasuitableeffectivefieldtheory(EFT)whosedegreesoffreedomareafieldHencodingthe low-energymodesoftheheavyparticle,andallotherlow-energyfieldsofthesystem. Inareference frame where the heavy particle is at rest up to fluctuations that are much smaller than M, the EFT Lagrangianhasthegeneralform 1 = H iD H+higher-dimensionoperators powersof + . (1) † 0 lightfields L × M L In the heavy-particle sector the Lagrangianis organizedas an expansion in 1/M. Contributions of higher-dimensionoperators to physical observables are counted in powers of E/M. It is crucial to notethattheEFTLagrangiancanbecomputedsettingE =0. Henceitsexpressionisindependentof thelow-energydynamics.TheprototypeoftheEFT(1)istheheavyquarkeffectivetheory[1,2]. ae-mail:[email protected] EPJWebofConferences In this contribution,we will concentrateon the case of a heavyparticle of mass M propagating inandinteractingwitha mediumcharacterizedbyatemperatureT muchsmallerthan M. Thisisa special case of the previousone. The EFT Lagrangianthat describesthe system at an energyscale muchlowerthanMhasagainthestructure(1). Aspointedoutbefore,thetemperaturedoesnotenter in the computation of the Lagrangian, which is fixed by matching at T = 0. This means that the Wilsoncoefficientsencodingthecontributionsofthehigh-energymodescanbecomputedinvacuum. ThetemperatureisintroducedviathepartitionfunctionoftheEFTandaffectsthecomputationof theobservables.Contributionsofhigher-dimensionoperatorsarecountedinpowersofT/M. Inorder tostudythereal-timeevolutionofphysicalobservablesandinparticulardecaywidths,itisconvenient tocomputethepartitionfunctionintheso-calledreal-timeformalism. Thisconsistsinmodifyingthe contour of the partition function to allow for real time (see e.g. [3]). In real time, the degrees of freedomdouble. However,intheheavy-particlesectortheseconddegreesoffreedomdecouplefrom thephysicaldegreesoffreedomsothat,aslongasloopcorrectionstolightparticlescanbeneglected, theonlydifferencewithT =0EFTsconsistsintheuseofthermalpropagators [4]. In the following, we will consider heavy particles interacting weakly with a weakly-coupled plasma. We will computefor them the correctionsto the width inducedby the medium, which we calltheirthermalwidth, Γ. Inparticular,insection2wewillcomputethethermalwidthofaheavy MajorananeutrinointeractingweaklywithaplasmaofmasslessStandardModel(SM)particlesinthe primordialuniverse.Whereasinsection3wewillcomputethethermalwidthofaquarkonium,which, liketheΥ(1S),isheavyenoughtobeconsideredanon-relativisticCoulombicboundstate,andispro- ducedinheavy-ioncollisionsofsufficienthighenergythattheformedmediumisaweakly-coupled plasmaoflightquarksandgluons. 2 Heavy Majorana neutrinos We consider a heavy Majorana neutrino, described by a field ψ of mass M much larger than the electroweakscale, M M ,coupledtotheSMonlythroughHiggs-leptonvertices: W ≫ 1 M = + ψ¯i∂/ψ ψ¯ψ F L¯ φ˜P ψ F ψ¯P φ˜ L , (2) L LSM 2 − 2 − f f R − ∗f L † f where istheSMLagrangianwithunbrokenSU(2) U(1) gaugesymmetry,φ˜ = iσ2φ ,withφ LSM L× Y ∗ theHiggsdoublet,L areleptondoubletswithflavor f,F isa(complex)YukawacouplingandP = f f L (1 γ5)/2,P =(1+γ5)/2aretheleft-handedandright-handedprojectorsrespectively.Thisextension R − oftheSMprovidesamodelforneutrinomassgenerationthroughtheseesawmechanism[5,6].Italso providesamodelforbaryogenesisthroughthermalleptogenesis[7,8]. Forarecentreviewsee[9]. Letusconsiderbaryogenesis.DifferentlyfromtheSM,themodel(2)hasthepotentialtooriginate a large baryonasymmetry. The mechanism is the following. At a temperatureT <M the neutrino falls out of equilibrium.1 This happens because, as the temperature decreases, re∼combination pro- cessesbecomeless andless frequentwhile theneutrinodecaysin theplasma. Sincethe neutrinois aMajoranaparticle,anetleptonasymmetryisgenerated. Thisistransferredtoabaryonasymmetry throughsphalerontransitions. ThephasesoftheYukawacouplingsF intheLagrangian(2)provide f extrasourcesofCandCPviolationsbesidesthoseintheSM.Finallythegeneratedbaryonasymmetry isprotectedfromwashoutaftersphaleronfreeze-outatatemperatureT M . Hencethemodelmay W ∼ fulfillthethreenecessarySakharovconditionsforbaryonasymmetry[10]inastrongerwaythanthe SMdoesandaccountfortheobservedbaryonasymmetryintheuniverse. 1 In(2)we havesimplified the realistic case with moreneutrino generations byconsidering only oneheavy Majorana neutrino. InternationalConferenceonNewFrontiersinPhysics2013 Figure1.HeavyMajorananeutrinodecayingintheearlyuniverseplasma. Animportantquantityforleptogenesisistherateatwhichtheplasmaoftheearlyuniversecreates Majorana neutrinos with mass M at a temperature T. This quantity is in turn related to the heavy Majorana neutrino thermal width in the plasma, see figure 1. We consider the temperature regime M T M . TheheavyMajorananeutrinosarenon-relativistic,withmomentum W ≫ ≫ pµ = Mvµ+kµ, kµ M. (3) ≪ Inkineticequilibriumtheresidualmomentumkµisoforder √MT;faroutofequilibriumitisoforder T. IftheneutrinoisatrestuptofluctuationsthataremuchsmallerthanM,thenvµ =(1,0). At an energy scale much smaller than M the low-energy modes of the Majorana neutrino are describedbyafieldNwhoseeffectiveinteractionswiththeSMparticlesareencodedintheEFT[11]:2 = + , (4) L LSM LN where iΓ (1) (2) (3) 1 = N¯ i∂ T=0 N+ L + L + L + . (5) LN 0− 2 ! M M2 M3 O M4! TheLagrangian(5)isofthetype(1),theonlydifferencebeingthattheMajorananeutrinoisagauge singletwithafinitewidthatzerotemperature,Γ ,duetoitsdecayintoaHiggsandlepton. T=0 Figure2.One-loopmatching conditionfortheneutrino-Higgs coupling. The powercountingof the EFT indicatesthatthe leadingoperatorsresponsibleforthe neutrino thermaldecayaredimension5operatorscontributingto (1). ThesymmetriesoftheEFTallowonly L foronepossibledimension5operator,whichis (1) =a N¯Nφ φ. (6) † L This describes the scattering of Majorana neutrinos with Higgs particles. Scatterings of Majorana neutrinoswith gaugebosons, leptonsor quarksare subleading. TheWilson coefficienta is fixed at oneloopbythematchingconditionshowninfigure2. Theleft-handsidestandsforan(in-vacuum) 2AnEFTforheavyMajoranafermionshasbeenconsideredalsoin[12]. EPJWebofConferences diagraminthefundamentaltheory(2),whereastheright-handsideforan(in-vacuum)diagraminthe EFT. Double linesare neutrinopropagators,single lines lepton propagatorsand dashed lines Higgs propagators.Forthedecaywidthonlytheimaginarypartisrelevant;itreads 3 Ima= F2λ, (7) −8π| | whereλisthefour-Higgscoupling. Figure3.Higgstadpolecontributingtotheneutrinothermal width. Thethermalwidthinducedby(6)maybecomputedfromthetadpolediagramshowninfigure3, wherethedashedlinehastobeunderstoodnowasaHiggsthermalpropagator. Theleadingthermal widthreads[13,14],[11],[15] Ima F2M T 2 Γ=2 M hφ†(0)φ(0)iT =−| 8|π λ(cid:18)M(cid:19) , (8) where φ (0)φ(0) standsforthethermalcondensateofthefieldφ. NotethatintheEFTthecalcu- † T h i lationhassplit intoa one-loopmatching,shownin figure2, whichcan be donein vacuum,and the calculationofa one-looptadpolediagram,showninfigure3, whichisdonein thermalfield theory. Theresultingsimplificationofthecalculationwithrespecttoafullyrelativistictreatmentinthermal fieldtheoryistypicaloftheEFTapproach. In a similar fashion one can calculate T/M suppressed corrections to the thermal decay width. Alsoforthemthecalculationsplitsintoanin-vacuummatchingofhigher-dimensionoperatorsinthe expansion(5) and in the calculation of one-looptadpole diagramsin thermalfield theory. Only di- mension7operatorscontributetothewidthatnextorderinT/M. Theseareeightoperatorsbelonging to (3). TwoeachdescribecouplingsoftheMajorananeutrinotoHiggsparticles,leptons,quarksand L gaugebosonsrespectively. Finally,thethermalwidthatfirstorderintheSMcouplingsandatorder T4/M3 reads[14],[11] F2M T 2 λk2T2 π2 T 4 7π2 T 4 Γ= | 8|π "−λ (cid:18)M(cid:19) + 2 M4 − 80(3g2+g′2) (cid:18)M(cid:19) − 60 |λt|2 (cid:18)M(cid:19) # , (9) wheregistheSU(2)coupling,g theU(1)coupling,andλ thetopYukawacoupling. ′ t 3 Heavy quarkonia Heavy quarkonia are bound states of heavy quarks. A quark is considered heavy if its mass M is much larger than the typical hadronic scale Λ . Quarkonia include bound states of charm and QCD bottom quarks. They are a probe of the state of matter made of gluonsand light quarksformed in high-energyheavy-ioncollisions[16]. Thereasonsarethatheavyquarksareformedearlyinheavy- ioncollisions,1/M 0.1fm 1fm,henceheavyquarkoniumformationissensitivetothemedium, ∼ ≪ andthatthequarkoniumdileptondecayprovidesa cleanexperimentalsignal. Thedissociationofa heavyquarkoniuminaplasmaofquarksandgluonsissketchedinfigure4. InternationalConferenceonNewFrontiersinPhysics2013 Figure4.Heavyquarkoniumdissociatinginaplasmaoflightquarksand Q gluons. Q UndertheconditionM T andforquarkoniaformedalmostatrestinthelaboratoryrestframe, ≫ themassMoftheheavyquarkisthelargestscaleinthesystem;asinthegeneralframeworkdiscussed inthe introduction,we mayconsiderquarkonianon-relativisticparticlessuitableto bedescribedby non-relativistic EFTs of the type (1). Differently from the Majorana neutrino case, quarkonia are, however,compositesystemscharacterizedbyseveralinternalenergyscales,whichinturnmayprobe thermodynamicalscalessmallerthanthetemperature. Hencethesituationismorecomplexthanthe one discussed in section 2. The energy scales characterizing a non-relativistic bound state are the typicalmomentumtransferintheboundstate,whichisoforder Mv,andthetypicalbindingenergy, which is of order Mv2. The parameter v 1 is the relative heavy-quarkvelocity. This is of order ≪ α foraCoulombicboundstate. Wecallthesescalesthenon-relativisticscales. Thenon-relativistic s scales are hierarchically ordered: M Mv Mv2. Effective field theories exploiting the non- ≫ ≫ relativistichierarchyinvacuumhavebeenreviewedin[17]. Foraweakly-coupledplasma,arelevant thermodynamicalscale,whichissmallerthanthetemperature,istheDebyemass,m ,i.e. theinverse D of the screening length of the chromoelectricinteractions. This is of order gT, hence we have that parametricallyT m . We callthescalesT,m andpossiblysmallerscalesthethermodynamical D D ≫ scales. For a discussion on the energyscale hierarchy in the case of Υ(1S) producedin heavy-ion collisionsattheLHCwereferto[18,19]. Forfirstexperimentalevidenceofsuppressionofexcited bottomoniumstatesattheLHCwereferto[20]. non−relativistic thermodynamical EFTs scales scales M Figure5.ScalesandEFTsforquarkoniumina thermalbath. M v T NRQCD mD M v2 pNRQCD The existenceof a hierarchyof energyscales calls for a descriptionof the system in terms of a hierarchyofEFTsofQCD,whichisthefundamentaltheoryinthiscase. ManyEFTsarepossiblein dependenceofthespecificorderingofthethermodynamicalscaleswithrespecttothenon-relativistic ones. These are schematically shown in figure 5. For temperatureslarger than those consideredin figure5quarkoniumdoesnotform. EPJWebofConferences We call generically non-relativistic QCD (NRQCD) [21, 22] the EFT obtained from QCD by integratingoutmodesassociatedwith thescale M andpossiblywith thermodynamicalscaleslarger thanMv. TheLagrangianreads D2 D2 =ψ iD + +... ψ+χ iD +... χ+ + , (10) † 0 † 0 light L 2M ! − 2M ! ··· L whereψ(χ)isherethefieldthatannihilates(creates)theheavy(anti)quark. We call generically potentialNRQCD (pNRQCD) [23, 24] the EFT obtained from NRQCD by integratingoutmodesassociatedwiththescale Mvandpossiblywiththermodynamicalscaleslarger than Mv2. The degrees of freedom of pNRQCD are quark-antiquarkstates (cast conveniently in a coloursingletfield SandacolouroctetfieldO),lowenergygluonsandlightquarkspropagatingin themedium.TheLagrangianreads p2 p2 = d3r Tr S i∂ V +... S+O iD V +... O † 0 s † 0 o L Z ( − M − ! − M − ! ) 1 +Tr O r gES+H.c. + Tr O r gEO+c.c. + + , (11) † † light · 2 · ··· L n o n o where E is the chromoelectricfield and g is now the SU(3) coupling. Both EFT Lagrangians(10) c and (11) are of the form (1); only the field S is a gauge singlet. The pNRQCD Lagrangian is also organizedasanexpansioninr: risthedistancebetweentheheavyquarkandantiquark,whichisof order1/(Mv). At leadingorderin r, the singlet field S satisfies a Schrödingerequation. Hence the Wilson coefficientV may be interpretedas the singlet quarkoniumpotential. Similarly the Wilson s coefficientV may beinterpretedasthe octetquarkoniumpotential. Theexplicitexpressionsof the o potentials depend on the version of pNRQCD that is considered; in particular, if thermodynamical scaleshavebeenintegratedout,V andV maydependonthetemperature. Wehavesetequaltoone s o possibleWilsoncoefficientsappearinginthesecondlineof (11). Akeyquantityfordescribingtheexpectedquarkoniumdileptonsignalisthequarkoniumdisso- ciationwidth.Atleadingorderitmaybeusefultodistinguishbetweentwodissociationmechanisms: gluodissociation, which is the dominant mechanism for Mv2 m , and dissociation by inelastic D ≫ partonscattering,whichisthedominantmechanismfor Mv2 m . Beyondleadingorderthetwo D ≪ mechanismsare intertwined and distinguishingbetween them would becomearbitrary, whereas the physicalquantityisthetotaldecaywidth. mv2 Figure6.QuarkoniumgluodissociationinpNRQCD. Gluodissociationisthedissociationofquarkoniumbyabsorptionofagluonfromthemedium[25, 26]. The gluon is lightlike or timelike (if it acquires an effective mass propagating through the medium). Gluodissociationisalsoknownassinglet-to-octetbreakup[4, 27]. Theprocesshappens whenthegluonhasanenergyoforder Mv2. HencegluodissociationcanbedescribedinpNRQCD. Inparticular,itcanbecalculatedbycuttingthegluonpropagatorinthepNRQCDdiagramshownin figure6,wherethesinglelinestandsforaquark-antiquarkcoloursingletpropagator,thedoubleline InternationalConferenceonNewFrontiersinPhysics2013 foraquark-antiquarkcolouroctetpropagatorandthecirclewithacrossforachromoelectricdipole vertex. 80 60 DM Α2(cid:144)Es1 40 Figure7.Γ1S duetogluodissociation(continuousblackline) CF vstheBhanot–Peskinapproximation(dashedredline). G(cid:144)@1S 20 0 0 1 2 3 4 5 T(cid:144)ÈE1È Cuttingrulesatfinitetemperature[28–31]constrainthegluodissociationwidthofaquarkonium withquantumnumbersnandl,(QQ) ,whichisatrestwithrespecttothemedium,tohavetheform nl d3q Γ = n (q)σnl (q), (12) nl Z (2π)3 B gluo qmin where σnl is the in-vacuumcross section (QQ) +gluon Q+ Q, and n is the Bose–Einstein gluo nl → B distribution. The explicit leading order (LO) expression of σ1S for a Coulombic 1S state like the gluo Υ(1S)is[27,32] αC E4 exp 4ρ arctan(t(q)) σ1glSuoLO(q)= s3F210π2ρ(ρ+2)2Mq15 t(q)2+ρ2 (cid:16)t(q)2πρ (cid:17), (13) (cid:16) (cid:17) et(q) 1 − whereρ = 1/(N2 1),t(q) = q/E 1, E = MC2α2/4andC = (N2 1)/(2N ). Thecorre- c − | 1|− 1 − F s F c − c spondingwidthis shownin figpure7. Note thatthe gluodissociationformulaholdsfortemperatures suchthatT Mvandm Mv2 E . Infigure7wealsocomparewithapopularapproximation, D 1 ≪ ≪ ∼| | theso-calledBhanot–Peskinapproximation[33,34]. ThisisthelargeN limitofthefullresult(13) c (butkeepingC =4/3intheoverallnormalization). TakingthelargeN limitamountsatneglecting F c finalstateinteractions,i.e. therescatteringofaQQpairinacolouroctetconfiguration. Figure8.Quarkonium dissociationbyinelastic partonscatteringinNRQCD. Dissociation by inelastic parton scattering is the dissociation of quarkonium by scattering with gluons and light-quarks in the medium [35, 36]. The exchanged gluon is spacelike. Dissociation by inelastic parton scattering is also known as Landau damping [37]. Because external gluons are EPJWebofConferences transverse, according to NRQCD each external gluon is suppressed by T/M, see (10). At leading order,wemaythereforejustconsidercontributionstothewidthcomingfromcuttingdiagramswitha self-energyinsertioninonesinglegluonexchange[38]. Iftheexchangedgluoncarriesamomentum oforderMv,thentherelevantdiagramsmaybecomputedinNRQCD,seefigure8. Iftheexchanged gluon carriesa momentummuch smaller than Mv, then the relevantdiagramsmay be computedin pNRQCD,seefigure9. Inbothfiguresthedashedcirclestandsforaone-loopself-energyinsertion. Figure9.Quarkoniumdissociationbyinelasticpartonscattering inpNRQCD. Cuttingrulesatfinitetemperatureconstrainthewidthbypartonscatteringofaquarkoniumwith quantumnumbersnandl,whichisatrestwithrespecttothemedium,tohavetheform d3q Γ = f (q) 1 f (q) σnl(q). (14) nl Z (2π)3 p ± p p Xp qmin h i Thesumrunsoverthedifferentincomingandoutgoingpartons(pstandsforparton,itmaybeeither a lightquark,q, for whichthe minussign holds, or a gluon, g, forwhich the plussign holds), with f = n and f = n (n is the Fermi–Diracdistribution). The quantityσnl is the in-mediumcross g B q F F p section (QQ) + p Q+ Q+ p. The convolutionformula correctly accounts for Pauli blocking nl → in the fermionic case (minus sign). Note that (14) differs from the correspondinggluodissociation formula(12)inthefactthatitaccountsforthethermaldistributionsofboththeincomingandoutgoing partons. Moreover,thecrosssectionσnl isnotanin-vacuumcrosssection. Explicitexpressionsfor p the cross section in the case of a Coulombic 1S state like the Υ(1S) can be found in [38]. These arevalid fortemperaturessuchthatT m Mv2 E . Thecorrespondingwidth isshownin D 1 ≫ ≫ ∼ | | figure10,wherewehaveassumedthreelightquarksinthemedium.Notethedifferentnormalization ofthewidthwithrespecttofigure7. 800 600 DM 2(cid:144)E1 Figure10.Γ duetoinelasticpartonscattering.Wehave Α2s 1S ΠCF 400 takenmDa0 =0.5and|E1|/mD =0.5,wherea0istheBohr G(cid:144)@81S radius. 200 0 2 4 6 8 10 T(cid:144)ÈE1È InternationalConferenceonNewFrontiersinPhysics2013 4 Conclusions Inaframeworkthatmakesclosecontactwithmoderneffectivefieldtheoriesfornon-relativisticparti- clesatzerotemperature,onecancomputethethermalwidthofnon-relativisticparticlesinathermal bath in a systematic way. In the situation M T one may organizethe computationin two steps ≫ andcomputethephysicsatthescale M asinvacuum. IfotherscalesarelargerthanT,thenalsothe physicsofthosescalesmaybecomputedasinvacuum.Wehaveillustratedthisontheexamplesofa heavyMajorananeutrinodecayingintheearlyuniverseplasmaandaheavyquarkoniumdissociating inaweakly-coupledquark-gluonplasma. Acknowledgements I thank Simone Biondini, Nora Brambilla and Miguel Escobedo for collaboration on the work presented in section2andNoraBrambilla,MiguelEscobedoandJacopoGhiglieriforcollaborationontheworkpresented insection3. Iacknowledge financial support fromDFGandNSFC(CRC110), andfromtheDFGcluster of excellence“Originandstructureoftheuniverse”(www.universe-cluster.de). References [1] N.IsgurandM.B.Wise,Phys.Lett.B232,113(1989). [2] E.EichtenandB.R.Hill,Phys.Lett.B234,511(1990). [3] M.LeBellac,ThermalFieldTheory(CambridgeUniversityPress,Cambridge,1996)272p. [4] N. Brambilla, J. Ghiglieri, A. Vairo and P. Petreczky, Phys. Rev. D 78, 014017 (2008) [arXiv:0804.0993[hep-ph]]. [5] P.Minkowski,Phys.Lett.B67,421(1977). [6] M.Gell-Mann,P.RamondandR.Slansky,Conf.Proc.C790927,315(1979)[arXiv:1306.4669 [hep-th]]. [7] M.FukugitaandT.Yanagida,Phys.Lett.B174,45(1986). [8] M.A.Luty,Phys.Rev.D45,455(1992). [9] M.Drewes,Int.J.Mod.Phys.E22,1330019(2013)[arXiv:1303.6912[hep-ph]]. [10] A.D.Sakharov,PismaZh.Eksp.Teor.Fiz.5, 32(1967)[JETPLett.5,24(1967)][Sov.Phys. Usp.34,392(1991)][Usp.Fiz.Nauk161,61(1991)]. [11] S. Biondini, N. Brambilla, M. A. Escobedo and A. Vairo, JHEP 1312, 028 (2013) [arXiv:1307.7680[hep-ph]]. [12] K.KoppandT.OkuiPhys.Rev.D84,093007(2011)[arXiv:1108.2702[hep-ph]]. [13] A.Salvio,P.LodoneandA.Strumia,JHEP1108,116(2011)[arXiv:1106.2814[hep-ph]]. [14] M.LaineandY.Schröder,JHEP1202,068(2012)[arXiv:1112.1205[hep-ph]]. [15] D.BodekerandM.Wormann,arXiv:1311.2593[hep-ph]. [16] T.MatsuiandH.Satz,Phys.Lett.B178,416(1986). [17] N. Brambilla, A. Pineda, J. Soto and A. Vairo, Rev. Mod. Phys. 77, 1423 (2005) [hep-ph/0410047]. [18] N. Brambilla, M. A. Escobedo, J. Ghiglieri, J. Soto and A. Vairo, JHEP 1009, 038 (2010) [arXiv:1007.4156[hep-ph]]. [19] A.Vairo,AIPConf.Proc.1317,241(2011)[arXiv:1009.6137[hep-ph]]. [20] S. Chatrchyan et al. [CMS Collaboration], Phys. Rev. Lett. 107, 052302 (2011) [arXiv:1105.4894[nucl-ex]]. EPJWebofConferences [21] W.E.CaswellandG.P.Lepage,Phys.Lett.B167,437(1986). [22] G.T.Bodwin,E.BraatenandG.P.Lepage,Phys.Rev.D51,1125(1995)[Erratum-ibid.D55, 5853(1997)][hep-ph/9407339]. [23] A.PinedaandJ.Soto,Nucl.Phys.Proc.Suppl.64,428(1998)[hep-ph/9707481]. [24] N.Brambilla,A.Pineda,J.SotoandA.Vairo,Nucl.Phys.B566,275(2000)[hep-ph/9907240]. [25] D.KharzeevandH.Satz,Phys.Lett.B334,155(1994)[arXiv:hep-ph/9405414]. [26] X. M. Xu, D. Kharzeev, H. Satz and X. N. Wang, Phys. Rev. C 53, 3051 (1996) [arXiv:hep-ph/9511331]. [27] N. Brambilla, M. A. Escobedo, J. Ghiglieri and A. Vairo, JHEP 1112, 116 (2011) [arXiv:1109.5826[hep-ph]]. [28] R.L.KobesandG.W.Semenoff,Nucl.Phys.B260,714(1985). [29] R.L.KobesandG.W.Semenoff,Nucl.Phys.B272,329(1986). [30] P.F.Bedaque,A.K.DasandS.Naik,Mod.Phys.Lett.A12,2481(1997)[hep-ph/9603325]. [31] F.Gelis,Nucl.Phys.B508,483(1997)[hep-ph/9701410]. [32] F.BrezinskiandG.Wolschin,Phys.Lett.B707,534(2012)[arXiv:1109.0211[hep-ph]]. [33] M.E.Peskin,Nucl.Phys.B156,365(1979). [34] G.BhanotandM.E.Peskin,Nucl.Phys.B156,391(1979). [35] L.GrandchampandR.Rapp,Phys.Lett.B523,60(2001)[hep-ph/0103124]. [36] L.GrandchampandR.Rapp,Nucl.Phys.A709,415(2002)[hep-ph/0205305]. [37] M. Laine, O. Philipsen, P. Romatschke and M. Tassler, JHEP 0703, 054 (2007) [arXiv:hep-ph/0611300]. [38] N. Brambilla, M. A. Escobedo, J. Ghiglieri and A. Vairo, JHEP 1305, 130 (2013) [arXiv:1303.6097[hep-ph]].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.