NON-PERTURBATIVE RENORMALIZATION TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk NON-PERTURBATIVE RENORMALIZATION Vieri Mastropietro Università di Roma “Tor Vergata”, Italy World Scientific NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. NON-PERTURBATIVE RENORMALIZATION Copyright © 2008 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN-13 978-981-279-239-6 ISBN-10 981-279-239-2 Printed in Singapore. Benjamin - Non-perturbative.pmd 1 12/27/2007, 12:05 PM December24,2007 10:57 WorldScienti(cid:12)cBook-9inx6in libro Preface The notion of renormalizationis at the coreof severalspectacular achieve- mentsofcontemporaryphysics;originatedinthecontextofQuantumField Theory,whereit appearedin orderto solvethe problem of the \ultraviolet divergences",it becomeslateron(partlyinaformknownas\renormaliza- tion group") centralin manyother areas,likein the analysisof the critical properties close to phase transitions in classical statistical mechanics or in the theory of quantum liquids in condensed matter. Renormalizationisgenerallypresentedinapurelyperturbativecontext (with no control of convergence of the series expansions), but in the last years, new mathematical techniques have been developed, allowing to put it on a (cid:12)rm mathematical basis. The aim of this book is to provide an in- troduction to rigorousnon-perturbativerenormalizationin QuantumField Theory, Statistical Physics and Condensed Matter. With respect to pre- vious books on renormalization, the focus is mainly on fermionic (rather than bosonic) functional integrals, whose theory has been developed more recently and for which the structure of renormalization is not obscured by too many technicalities. Another important novelty is the implementation of Ward Identities based on local symmetries in the context of multiscale analysis,whichallowstherigorousanalysisofmodelswith nontrivial(cid:12)xed pointsandanomalousbehaviour. Thebookisdevotedeithertomathemati- cians and physicists aiming to enter into contact with the modern theory of renormalization; prerequisites are then limited to a minimum. We start with an introduction to renormalizationin physics and to the mathematicaltechniquesfortreatingfermionicfunctionalintegrals,includ- ing multiscale decomposition techniques, tree expansions and determinant v December24,2007 10:57 WorldScienti(cid:12)cBook-9inx6in libro vi NON-PERTURBATIVERENORMALIZATION bounds. Such methods allow a uni(cid:12)ed treatment of models coming from QuantumField Theory,Statistical Physicsand Condensedmatter. In par- ticular,the(cid:12)rstpartofthisbookisdevotedtoconstructiveQuantumField Theory,providingamathematicalconstructionofmodelsatlowdimensions and discussing the removal of the ultraviolet and infrared cut-o(cid:11), the veri- (cid:12)cation of the axioms and the validity of Ward Identities with the relative anomalies. The second part is devoted to lattice 2d Statistical Physics, analyzing in particular the theory of universality in perturbed Ising mod- els and the computation of the non-universal critical indices in Vertex or Ashkin-Teller models. Finally in the third part, the theory of Quantum liquids like Luttinger or Fermi liquids is developed, considering models of interest in Condensed Matter like the Hubbard model in 1d or 2d or the Heisenberg spin chain. Mostofthematerialpresentedinthisbookgrewoutfromcommonwork with G. Benfatto and G. Gallavotti, and with the researchers composing theRomanschoolofrigorousrenormalization,namelyF.Bonetto,P.Falco, G.Gentile,G.Giuliani,A.ProcacciandB.Scoppola. Ihavealsobene(cid:12)tted from important discussions, which stronglyin(cid:13)uenced my point of view on renormalization,withJ.MagnenandV.RivasseauinParis,withT.Spencer in Princeton and with K. Gawedzki in Lion. Vieri Mastropietro December24,2007 10:57 WorldScienti(cid:12)cBook-9inx6in libro Contents Preface v Introduction to Renormalization 1 1. Basic Notions 3 1.1 Relativistic quantum (cid:12)eld theory . . . . . . . . . . . . . . 3 1.1.1 Quantum (cid:12)elds . . . . . . . . . . . . . . . . . . . 3 1.1.2 Functional integrals . . . . . . . . . . . . . . . . . 5 1.1.3 Perturbative renormalization . . . . . . . . . . . . 8 1.2 Classical statistical mechanics . . . . . . . . . . . . . . . . 12 1.2.1 Phase transitions . . . . . . . . . . . . . . . . . . 12 1.2.2 Universality and non-universality . . . . . . . . . 14 1.3 Condensed Matter . . . . . . . . . . . . . . . . . . . . . . 16 1.3.1 Electrons in a crystal . . . . . . . . . . . . . . . . 16 1.3.2 The free Fermi gas. . . . . . . . . . . . . . . . . . 19 1.3.3 Fermi liquids . . . . . . . . . . . . . . . . . . . . . 21 1.3.4 Luttinger liquids and BCS superconductors . . . . 23 2. Fermionic Functional Integrals 27 2.1 Grassmann variables . . . . . . . . . . . . . . . . . . . . . 27 2.2 Grassmann measures . . . . . . . . . . . . . . . . . . . . . 29 2.3 Truncated expectations . . . . . . . . . . . . . . . . . . . 31 2.4 Properties of Grassmann integrals . . . . . . . . . . . . . 32 2.5 Gallavotti-Nicolo(cid:19)tree expansion . . . . . . . . . . . . . . 33 2.6 Feynman graphs . . . . . . . . . . . . . . . . . . . . . . . 39 2.7 Determinant bounds for simple expectations . . . . . . . . 42 vii December24,2007 10:57 WorldScienti(cid:12)cBook-9inx6in libro viii NON-PERTURBATIVERENORMALIZATION 2.8 The Brydges-Battle-Federbushrepresentation . . . . . . . 45 2.9 The Gawedzki-Kupiainen-Lesniewskiformula . . . . . . . 51 Quantum Field Theory 57 3. The Ultraviolet Problem in Massive QED2 59 3.1 Regularization and cut-o(cid:11)s . . . . . . . . . . . . . . . . . 59 3.2 Integration of the bosons . . . . . . . . . . . . . . . . . . 61 3.3 Propagatordecomposition . . . . . . . . . . . . . . . . . . 63 3.4 Renormalized expansion . . . . . . . . . . . . . . . . . . . 66 3.5 Feynman graph expansion . . . . . . . . . . . . . . . . . . 68 3.6 Convergenceof the renormalized expansion . . . . . . . . 69 3.7 Determinant bounds . . . . . . . . . . . . . . . . . . . . . 72 3.8 The short memory property . . . . . . . . . . . . . . . . . 75 3.9 Extraction of loop lines . . . . . . . . . . . . . . . . . . . 75 3.10 The 2-point Schwinger function . . . . . . . . . . . . . . . 79 3.11 The Yukawa model . . . . . . . . . . . . . . . . . . . . . . 79 4. Infrared Problem and Anomalous Behavior 81 4.1 Anomalous dimension . . . . . . . . . . . . . . . . . . . . 81 4.2 Renormalization . . . . . . . . . . . . . . . . . . . . . . . 82 4.3 Modi(cid:12)cation of the fermionic interaction . . . . . . . . . . 83 4.4 Bounds for the renormalized expansion. . . . . . . . . . . 89 4.5 The beta function at lowest orders . . . . . . . . . . . . . 96 4.6 Boundedness of the (cid:13)ow . . . . . . . . . . . . . . . . . . . 99 4.7 The 2-point Schwinger function . . . . . . . . . . . . . . . 101 5. Ward Identities and Vanishing of the Beta Function 105 5.1 Schwinger functions and running couplings . . . . . . . . 105 5.2 Ward identities in presence of cut-o(cid:11)s . . . . . . . . . . . 107 5.3 The correction identity . . . . . . . . . . . . . . . . . . . . 109 5.4 The Schwinger-Dysonequation . . . . . . . . . . . . . . . 115 5.5 Analysis of the cut-o(cid:11) corrections . . . . . . . . . . . . . . 118 5.6 Vanishing of Beta function. . . . . . . . . . . . . . . . . . 120 5.7 Non-perturbative Adler-Bardeen theorem . . . . . . . . . 122 5.8 Further remarks . . . . . . . . . . . . . . . . . . . . . . . 123 6. Thirring and Gross-NeveuModels 125 December24,2007 10:57 WorldScienti(cid:12)cBook-9inx6in libro Contents ix 6.1 The Thirring model . . . . . . . . . . . . . . . . . . . . . 125 6.2 Removing the fermionic ultraviolet cut-o(cid:11) before the bosonic one . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.3 Removing the bosonic ultraviolet cut-o(cid:11) before the fermionic one . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.4 The Gross-Neveumodel . . . . . . . . . . . . . . . . . . . 132 7. Axioms Veri(cid:12)cation and Wilson Fermions 133 7.1 Osterwalder-Schraderaxioms . . . . . . . . . . . . . . . . 133 7.2 Lattice regularization and fermion doubling . . . . . . . . 135 7.3 Integration of the doubled fermions . . . . . . . . . . . . . 137 7.4 Lattice fermions . . . . . . . . . . . . . . . . . . . . . . . 138 8. Infraed QED4 with Large Photon Mass 143 8.1 Regularization . . . . . . . . . . . . . . . . . . . . . . . . 143 8.2 Tree expansion . . . . . . . . . . . . . . . . . . . . . . . . 145 Lattice Statistical Mechanics 147 9. Universality in Generalized Ising Models 149 9.1 The nearest neighbor Ising model . . . . . . . . . . . . . . 149 9.2 Heavy and light Majorana fermions. . . . . . . . . . . . . 153 9.3 Generalized Ising models. . . . . . . . . . . . . . . . . . . 156 9.4 Fermionic representation of the generalized Ising model . 157 9.5 Integration of the (cid:31)-variables . . . . . . . . . . . . . . . . 159 9.6 Integration of the light fermions. . . . . . . . . . . . . . . 160 9.7 Correlation functions and the speci(cid:12)c heat . . . . . . . . . 164 10. Nonuniversality in Vertex or Isotropic Ashkin-Teller Models 165 10.1 Ashkin-Teller or Vertex models . . . . . . . . . . . . . . . 165 10.2 Fermionic representation . . . . . . . . . . . . . . . . . . . 167 10.3 Anomalous behaviour . . . . . . . . . . . . . . . . . . . . 170 10.4 Simmetry properties . . . . . . . . . . . . . . . . . . . . . 171 10.5 Integration of the light fermions. . . . . . . . . . . . . . . 175 10.6 The speci(cid:12)c heat . . . . . . . . . . . . . . . . . . . . . . . 177 11. Universality-Nonuniversality Crossover in the Ashkin- Teller Model 181