ebook img

Non-perturbative gauge couplings from holography PDF

0.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Non-perturbative gauge couplings from holography

Non-perturbative gauge couplings from holography MarcoBillo`1∗,MarialuisaFrau1,LucaGiacone1,andAlbertoLerda2 1 DipartimentodiFisica,Universita`diTorino andI.N.F.N.-sezionediTorino,ViaP.Giuria1,I-10125Torino,Italy 2 DipartimentodiScienzeeInnovazioniTecnologiche,Universita`delPiemonteOrientale andI.N.F.N.-GruppoCollegatodiAlessandria,VialeT.Michel11,I-15121Alessandria,Italy 2 1 Keywords F-theory,gravitydual,non-perturbativecorrections. 0 WeshowhowD-instantoncorrectionsmodifythedilaton-axionprofileemittedbyanO7/D7systemturning 2 itintothenon-singularF-theorybackgroundwhichcorrespondstotheeffectivecouplingonaD3probe. n a J 0 2 1 Introduction ] h WeconsiderthelocallimitofTypeI′stringtheorywithN D7branesclosetoanO7planeandstudythe t f - profileofthecorrespondingdilaton-axionfieldτ. Attheperturbativelevel,τ isnon-trivialandpossesses p e logarithmicsingularitiesattheorientifoldandbranepositions. Thesesingularitiesareincompatiblewith h its roˆle as string couplingconstant, and mustthereforebe resolvedbynon-perturbativeeffects, resulting [ intoanon-singularF-theorybackground. TheNf = 4casewasconsideredlongagobyA.Sen[1]who, 1 basedonthesymmetriesandmonodromypropertiesoftheTypeI′ configuration,suggestedthattheexact v dilaton-axionprofilebe givenbythe effectivecouplingofthe 4dN = 2SYM theorywith gaugegroup 1 SU(2)andN = 4flavors, asencodedin thecorrespondingSeiberg-Wittencurve[2]. Thisisthegauge f 3 theorysupportedbyaprobeD3braneinthelocalTypeI′model,andthustheF-theorybackgroundcanbe 2 interpretedasthegravitydualoftheeffectivegaugecouplingoftheD3braneworld-volumetheory[3]. 4 . Here we provide a microscopic description of how the exact F-theory background arises when D- 1 instantonsareintroducedintheD7/O7systemandshowhowtheymodifythesourcetermsintheτ field 0 2 equation[4]. ThecomputationrequiresintegratingovertheD-instantonmodulispaceandthisisdonevia 1 localization techniques [5,6] that allow to obtain explicit results even when all instanton numbers con- : tribute. Inthiswaywedemonstratehowthenon-perturbativecorrectionstotheeffectivegaugecoupling v i are incorporatedin the dualgravitationalsolution. Theagreementoftheexactdilaton-axionprofilethus X obtainedwith the couplingconstantofthe D3 branegaugetheorypersists allthe way downto N = 0, f r whichamountstosaythatanO7planeplusitsD-instantoncorrectionsrepresentsthegravitationalsource a forthegaugecouplingofthepureSU(2)N =2SYMtheoryin4d. The local configuration we consider contains N D7 branes; the massless excitations of the D7/D7 f open strings describe a gauge theory in eight dimensions and the orientifold projection implies that its gaugegroupisSO(N ). Thesedegreesoffreedomcanbeassembledintoanadjointchiralsuperfield f 1 M =m+θψ+ θγµνθF +··· . (1) µν 2 A D3-brane(plusits orientifoldimage)in thisbackgroundsupportsa four-dimensionalSp(1) ∼ SU(2) gauge theory with N hypermultiplets, arising from the D3/D7 strings, and flavor group SO(N ). For f f N = 4 this theory has vanishing β-function, and we will mostly consider this case, except in the last f section. ∗ Correspondingauthor E-mail:[email protected],Phone:+390116707213,Fax:+390116707214. 2 M.Billo`,M.Frau,L.Giacone,andA.Lerda:Holographiccouplings The transverse space to the O7 plane and the D7 branes (parametrized by a complex coordinate z) correspondsto the Coulomb branchof the modulispace of the theory: placing the probeD3 brane in z (and its image in −z) amounts to give a vacuum expectation value φ = (a,−a), with a = z , to cl 2πα′ the SU(2) complex adjoint scalar. On the other hand, displacing the D7 branes in z (i = 1,...,N ) i f correspondstogivingavacuumexpectationvalue z m =(m ,...,m ,−m ,...,−m ), with m = i , (2) cl 1 Nf 1 Nf i 2πα′ totheSO(N )complexadjointscalarmofeq.(1).IntheD3braneeffectiveaction,them ’srepresentthe f i massesofthehypermultiplets,whiletheroˆleofthecomplexifiedgaugecouplingisplayedbythedilaton- axion field τ belonging to the closed string sector. Actually, τ is the first componentof a chiral scalar superfieldT inwhichallrelevantmasslessclosedstringsdegreesoffreedomcanbeorganizedandwhich isschematicallygivenby[7] T =τ +θλ+···+2θ8 ∂4τ¯+··· , (3) (cid:0) (cid:1) where∂ standsfor ∂ . BoththeO7planeandtheD7branescoupletoT andproduceanon-trivialprofile ∂z for it. This fact allows to establish an explicit gauge/gravityrelation: the effective couplingτ(a) of the SU(2)theoryontheprobeD3braneisthedilaton-axionbackgroundτ(z)producedbytheD7/O7system. Suchabackgroundisna¨ıvely(i.e. perturbatively)singularbut,aswewillshowinthenextsections,itcan be promotedto a full-fledgednon-singularF-theorybackgroundby takingintoaccountnon-perturbative D-instantoncorrections. Onthegaugetheoryside,thisamountstopromotetheperturbativeSU(2)gauge couplingtotheexactoneencodedinthecorrespondingSeiberg-Wittencurve. 2 The dilaton-axionprofile Aswementionedabove,theD7branesandtheO7planeactassourcesforτ, localizedinthetransverse directions. Theclassicalperturbativedilaton-axionprofilecorrespondingtoN = 4D7branesplacedin f z isgivenby i 4 z−z z+z ∞ (2πα′)2ℓ trm2ℓ 2πiτ (z)=2πiτ + log i +log i =2πiτ − cl , (4) cl 0 Xh z z i 0 X 2ℓ z2ℓ i=1 ℓ=1 where in the second step we used eq.(2). This profile, which matches the 1-loop running of the gauge couplingoftheSU(2)SYMtheorywithN =4flavors,canbeobtainedbycomputingthe1-pointfunction f oftheτ emissionvertexwiththeboundarystatesoftheD7branesandthecrosscapstateoftheO7plane. Thedilaton-axion(4)solvestheequationofmotion(cid:3)τ =J δ2(z),wheretheclassicalcurrent cl cl ∞ (2πα′)2ℓ J =−2i trm2ℓ ∂2ℓ (5) cl (2ℓ)! cl X ℓ=1 arisesfrominteractionsontheD7world-volumebetweenτ andtheSO(8)adjointscalarmwhenthelatter isfrozentoitsvacuumexpectationvalue(2). Suchinteractionscanbeobtainedfromasourceactionofthe form 1 S = − d8xJ τ¯ (6) source (2π)3(2πα′)4Z cl where the dimensionful coefficient is the ratio of the D7 brane tension and the gravitational coupling constant,whichistheappropriatenormalizationforaD7sourceaction[4]. UsingthesuperfieldsM and Holographiccouplings 3 T ofeq.s(1)and(3),we caneasilyrealizethattheaboveinteractionscanbederivedfromthefollowing perturbative8dprepotential (2πα′)2ℓ−4 F (M,T)=2πi tr M2ℓ∂2ℓ−4T . (7) cl (2ℓ)! X ℓ ComparingthecorrespondingclassicalactionS = 1 d8xd8θ F (M,T)withthedefinition(6)of cl (2π)4 cl thesourceaction,wethusobtain R (2πα′)4 δF (2πα′)4 J =− cl ≡ − δ¯F , (8) cl 2π δ(θ8τ¯)(cid:12)(cid:12)T=τ0,M=mcl 2π cl (cid:12) whereweintroducedthehandynotationδ¯⋆ ≡ δ⋆ . From this analysis it is clear how one shouldδ(pθ8rτo¯)c(cid:12)eTe=dτt0o,Mo=btmaicnl the complete dilaton-axionsource J. (cid:12) Onehasfirsttopromotetheclassicalprepotentialtothefullonebyincludingnon-perturbativecorrections, i.e. F(M,T)=F (M,T)+F (M,T),andthenwrite,inanalogytoeq.(8),J =−(2πα′)4 δ¯F. cl n.p. 2π Thenon-perturbativecontributiontotheprepotentialariseswhenD-instantonsareaddedtotheD7/O7 system; in thiscase newtypesofexcitationsappearcorrespondingtoopenstringswith atleastoneend- point on the instantonic branes, i.e. D(–1)/D(–1)or D(–1)/D7 strings. Due to the boundaryconditions, theseexcitationsdonotdescribedynamicaldegreesoffreedombutaccountinsteadfortheinstantonmod- uli,whichwecollectivelydenotebyM ,wherek istheinstantonnumber. Amongthem,onefindsthe (k) coordinatesofthecenterofmassandtheirfermionicpartners,whichcanbeidentifiedwiththe8dsuper- spacecoordinatesxandθ, respectively. Theinteractionsamongthemoduliareencodedintheinstanton actionandcanbecomputedsystematicallybystringdiagramsasdescribedinRef.s[8,9]. Inthecaseat hand,theinstantonactioncanbewrittenas S (M ,M,T)=S(M )+S(M ,M)+S(M ,T) (9) inst (k) (k) (k) (k) whereS(M )isthepuremoduliaction,whichcorrespondstotheADHMmeasureonthemodulispace, (k) S(M ,M)isthemixedmoduli/gaugefieldsactionandfinallyS(M ,T)isthemixedmoduli/gravity (k) (k) action.Herewefocusonthemostrelevantpartforourgoal,namelyS(M ,T),andrefertotheliterature (k) for the other terms[4,10]. To obtain S(M ,T), we compute mixed open/closedstring disk diagrams (k) involvinginstanton moduliand bulk fields. The simplest diagramsyield the “classical” instantonaction −2πikτ supersymmetrizedbyinsertionsofθmoduli,sothatτ getsreplacedbythesuperfieldT,resulting in−2πikT. OthermixeddiagramscontributingtoS(M ,M)involvethebosonicmodulusχ,whichis (k) akintothepositionoftheD(–1)’sinthetransversespacetotheD7’s,butwithanti-symmetricChan-Paton indices due to the orientifoldprojection. Such diagramsturn out to be exactly computable, even if they involveanarbitrary(even)numberofχinsertions. Moreover,theyaresupersymmetrizedbyθ-insertions thatpromoteallτ occurrencestoT.Altogether,themixedmoduli/gravityactionis[4] ∞ (2πα′)2ℓ S(M ,T)=−2πi tr(χ2ℓ)p¯2ℓT , (10) (k) (2ℓ)! X ℓ=0 wherep¯isthemomentumconjugatetoz. Giventhecompleteinstantonaction(9),onecanobtainthenon-perturbativeeffectiveactionontheD7 branesbyperforminganintegralovertheD(–1)modulispace,namely Sn.p. = Z dM(k)e−Sinst(M(k),M,T) =Z d8xd8θFn.p.(M,T), (11) X k where in the last step we have explicitly exhibited the integral over the superspace coordinates x and θ todefinethenon-perturbativeprepotential. Thelatterthereforearisesfromanintegraloverallremaining 4 M.Billo`,M.Frau,L.Giacone,andA.Lerda:Holographiccouplings instantonmoduli,alsocalledcenteredmoduli.Suchanintegralcanbeexplicitlycomputedusinglocaliza- tion techniques[5,6]. Thisamountsto selectoneof thepreservedsuperchargesasa BRST chargeQso thattheinstantonaction(9)isQ-exact,andtoorganizetheinstantonmoduliinBRSTdoubletssothatthe integraloverthemreducestotheevaluationofdeterminantsaroundthefixedpointsofQ. Inordertohave isolatedfixedpoints,theinstantonactionmustbedeformedbysuitableparameters(toberemovedatthe end)which in ourset-uparise froma particularRR graviphotonbackground[10,11]. Here, we will not delveintothedetailsbutsimplyrecalltheessentialingredientsoftheprocedure. Onefirstintroducesthek-instantonpartitionfunctionZ accordingto k Zk =Z dM(k)e−Sinst(M(k),M,T;E), (12) whereE isthedeformationparameter.Then,settingq =e2πiτ0 andZ0 =1,onewritesthegran-canonical partitionfunctionZ = ∞ qkZ ,fromwhichoneobtainsthenon-perturbativeprepotential k=0 k P ∞ F = lim ElogZ = qkF . (13) n.p. k E→0 X k=1 Forexample,F1 =limE→0EZ1,F2 =limE→0E Z2−21Z12 andsoon.Incompleteanalogywitheq.(8), onethen writestheinstanton-inducedsourcefor(cid:0)the dilaton(cid:1)-axionasJ = −(2πα′)4 δ¯F , so thatits n.p. 2π n.p q-expansion involves the variations δ¯F , which in turn are related to the variations δ¯Z . For example, k k δ¯F1 = limE→0Eδ¯Z1, δ¯F2 = limE→0E δ¯Z2 −Z1δ¯Z1 and so on. Given the explicit form (10) of the moduliaction,itreadilyfollowsthat (cid:0) (cid:1) ∞ δ¯Z =4πi (2πα′)2ℓp¯2ℓ+4Z(2ℓ), (14) k k X ℓ=0 whereweintroducedthe“correlators”oftheχ-moduliintheinstantonmatrixtheory 1 Zk(2ℓ) = (2ℓ)! ZdM(k) tr(χ2ℓ)e−Sinst(M(k),M,T;E)(cid:12)(cid:12)T=τ0,M=mcl . (15) (cid:12) Atthefirsttwoinstantonnumbersonefinds ∞ δ¯F =4πi (2πα′)2ℓp¯2ℓ+4 lim EZ(2ℓ), 1 X E→0 1 ℓ=0 (16) ∞ δ¯F =4πi (2πα′)2ℓp¯2ℓ+4 lim E Z(2ℓ)−Z Z(2ℓ) , 2 Xℓ=0 E→0 (cid:0) 2 1 1 (cid:1) and similar expressionscan be easily obtained for any k. The same combinationsof partition functions Z andχ-correlatorsZ(2ℓ)appearinthecomputationoftheD-instantoncontributionstoaratherdifferent k k classofobservables,namelytheprotectedcorrelatorshtrmJiformingthechiralringoftheSO(8)gauge theory defined in the 8d world-volume of the D7 branes. The non-perturbative part of the chiral ring elementshaveaq-expansion,htrmJi = ∞ qkhtrmJi , whichcanbeexplicitlycomputedusing n.p. k=1 k localizationtechniquesasdiscussedinRef.[1P2]. Atthefirsttwoinstantonnumbersonefinds (−1)ℓ (−1)ℓ lim EZ(2ℓ) = htrm(2ℓ+4)i , lim E Z(2ℓ)−Z Z(2ℓ) = htrm(2ℓ+4)i (17) E→0 1 (2ℓ+4)! 1 E→0 (cid:0) 2 1 1 (cid:1) (2ℓ+4)! 2 and so on. Using these results, we therefore find a very strict relation between the δ¯ variation of the prepotentialandthenon-perturbativeSO(8)chiralring[13–15],namely ∞ (−1)ℓ δ¯F =4πi (2πα′)2ℓp¯2ℓ+4 htrm2ℓ+4i , (18) k (2ℓ+4)! k X ℓ=0 Holographiccouplings 5 which,takingintoaccountthefactthathtrm2i =0forallk,impliesthat k (2πα′)4 ∞ ∞ (2πα′)2ℓp¯2ℓ J =− qkδ¯F =−2i (−1)ℓ htrm2ℓi . (19) n.p. 2π k (2ℓ)! n.p. X X k=1 ℓ=1 Addingthisexpression(rewritteninthe z coordinatespace)tothe classicaltermJ ofeq.(8) yieldsthe cl completesourceJ. Solvingthefieldequation(cid:3)τ =Jδ2(z),wegetthentheexactdilaton-axionprofile ∞ (2πα′)2ℓ htrm2ℓi (2πα′)m 2πiτ(z)=2πiτ − =2πiτ + logdet 1− . (20) 0 X 2ℓ z2ℓ 0 D (cid:16) z (cid:17)E ℓ=1 At the perturbative level, eq.(4) expressed that fact that the quantities trm2ℓ of the D7 theory act as a cl source for the dilaton-axion. This source, however, is non-perturbativelycorrected and the exact result is obtainedbyreplacingthe classicalvacuumexpectationvalueswiththe fullquantumcorrelatorsin the D7-branetheory,namelytrm2ℓ ≡ trhm2ℓi → htrm2ℓi. Furthermore,introducingtheoperator cl 1 (2πα′)m O (z)=τ + logdet 1− (21) τ 0 2πi (cid:16) z (cid:17) wecanrewriteeq.(20)asτ(z)= O (z) ,whichhasthetypicalformofaholographicrelation. τ (cid:10) (cid:11) 3 Comparisonwithgaugetheory results Aswesaidabove,thechiralringelementshtrm2ℓiareexplicitlycomputablevialocalizationandforthe first few valuesofℓ theirinstantonexpansioncan be foundin Ref. [12]. Using these resultsin (20) and parametrizingthe transversedirectionswith z = 2πα′a in such a way thatall α′ factorsin the τ profile are reabsorbed, we get an expression τ(a) that, by direct comparison, can be seen to be exactly equal to the large-a expansion of the low-energy effective coupling of the SU(2) SYM theory with N = 4 f massiveflavors,asderivedfromtheSeiberg-Wittencurve[13]. Wecanthereforerephrasethisresultinthe followingrelation τ (z)⇔τ (a) (22) sugra gauge wherea = z representsthe Coulombbranchparameter. Itis interestingtoremarkthatonthesuper- 2πα′ gravity side the non-perturbativecontributions to the dilaton-axion profile τ (z) are due to “exotic” sugra instantonconfigurationsinthe8dworld-volumetheoryontheD7branes,whileonthegaugetheoryside thenon-perturbativeeffectsinτ (a)arisefromstandardgaugeinstantonsinthe4dSYMtheory.These gauge twotypesofcontributionsagreebecausetheyactuallyhavethesamemicroscopicorigin:inbothcasesthey areduetoD(–1)branes,whichrepresent“exotic”instantonsfortheD7/O7systemandordinaryinstantons fortheprobeD3branesupportingthe4dSYMtheory. Therelation(22)canobviouslybeusedintwoways. Ontheonehand,itcanbeusedtoreadthegauge couplingconstantofthe4dSU(2)theoryintermsofthequantumcorrelatorsinthe8dtheorywhichgauges itsSO(8)flavorsymmetry. Thisistheapproachwehavediscussedsofar. Ontheotherhand,therelation (22)canbeusedtoreadthe8dchiralringelementsintermsofthe4dgaugecoupling.Actuallythiscanbe doneinanexactway,i.e. toallordersinq. Infact,usingrecursionrelationsofMatonetype,itispossible toextractfromtheSeiberg-Wittencurvetheexactexpressionofanygivencoefficientoftheexpansionof τ (a)ininversepowersofa. Forexample,fromtheexactcoefficientof 1 wecandeducethat gauge a4 htrm4i=E (q)R2−6θ4(q)T +6θ4(q)T (23) 2 4 1 2 2 whereE istheEisensteinseriesof(almost)weight2,θ andθ areJacobiθ-functionsandR,T andT 2 2 4 1 2 arethequadraticandquarticSO(8)massinvariants(seeRef.[15]fordetails). Thisexpressionresumsthe instantonexpansion ∞ qkhtrm4i inwhichonlythefirstfewtermswereknownbydirectevaluation, k=1 k andcanbegeneralizePdtoallotherchiralringelements. 6 M.Billo`,M.Frau,L.Giacone,andA.Lerda:Holographiccouplings 4 The pure SU(2)theory The gauge/gravity relation (22) can be established also when some or all flavors are decoupled to re- cover the asymptotically free theories with N = 3,2,1,0. In particular, from the gauge theory side f one can reach the pure SU(2) case by sending q → 0 and m → ∞, while keeping the combination i qm m m m ≡ Λ4 finite. Λ4 isthedimensionfulcountingparameterintheinstantonexpansionwhich 1 2 3 4 replacesthedimensionlessq of thesuperconformalN = 4 theory; in otherwordsΛ canbe interpreted f asthedynamicallygeneratedscaleofthepureSU(2)theory.Fromthesupergravitysidethedecouplingof theflavorscorrespondstosendingallD7branesfarawayfromtheorigin,orequivalentlytoevaluatethe dilaton-axionτ(z)atazmuchsmallerthantheD7branepositionsinsuchawaythatonlytheorientifold O7planeactsasasourceforτ. InthiscasewecanthereforerepeatthesamestepsdescribedinSection2 andevaluatethedilaton-axionfieldemittedbyjusttheO7plane. Atthenon-perturbativelevelwhenkD-instantonsareputontheorientifoldplane,themaindifference withrespecttothecasewiththeD7’sisthatthespectrumofinstantonmodulicontainsonlyneutralmoduli corresponding to open strings of type D(–1)/D(–1). The rest of the derivation remains as before. In particulareq.s(12)and(15)arewell-definedevenintheabsenceoftheD7’s,andthusformulaslike(16) continuetohold. Forexample,onefinds 12 105 lim EZ(2ℓ) =− δ , lim E Z(2ℓ)−Z Z(2ℓ) =− δ (24) E→0 1 4! ℓ,0 E→0 (cid:0) 2 1 1 (cid:1) 4·8! ℓ,2 which are the analogue of eq.(17) for the pure SU(2) theory. Of course the interpretationas chiralring elementsin a flavortheoryis no longerpossible since thereare no flavors. Using these results andtheir generalizationsathigherinstantonnumbersk,wecanstillfindthevariationsδ¯F oftheprepotentialand k obtainfromthesethenon-perturbativesourcecurrentJ ,whosefirstinstantontermsare n.p. 12 105 J =2i Λ4(2πα′p¯)4 +Λ8(2πα′p¯)8 +··· . (25) n.p. h 4! 4·8! i Solvingthefieldequation(cid:3)τ (z)=J δ2(z)andexpressingtheresultintermsofa= z ,weget n.p. n.p. 2πα′ Λ4 105 Λ8 2πiτ (a)=3 + +··· (26) n.p. a4 32 a8 whichexactlycoincideswiththefirsttwoinstantoncontributionsasderivedfromtheSeiberg-Wittencurve [6,16,17]. After adding the perturbativepiece 2πiτ −4log 4a2 , we can therefore concludethat the 0 Λ2 full dilaton-axionprofile sourcedby an O7 plane plus its D-in(cid:0)stant(cid:1)onscompletely agreeswith the exact couplingofthepureSU(2)N =2SYMtheoryind=4. ThisworkwassupportedinpartbytheMIUR-PRINcontract2009-KHZKRX. References [1] A.Sen,Nucl.Phys.B475,562–578(1996). [2] N.SeibergandE.Witten,Nucl.Phys.B431,484–550(1994). [3] T.Banks,M.R.Douglas,andN.Seiberg,Phys.Lett.B387,278–281(1996). [4] M.Billo,M.Frau,L.Giacone,andA.Lerda,JHEP1108,007(2011). [5] G.W.Moore,N.Nekrasov,andS.Shatashvili,Commun.Math.Phys.209,77–95(2000). [6] N.A.Nekrasov,Adv.Theor.Math.Phys.7,831–864(2004). [7] J.H.Schwarz,Nucl.Phys.B226,269(1983);P.S.HoweandP.C.West,Nucl.Phys.B238,181(1984). [8] M.Billo,M.Frau,I.Pesando,F.Fucito,A.Lerda,andA.Liccardo,JHEP02,045(2003). [9] M.B.GreenandM.Gutperle,JHEP02,014(2000). [10] M.Billo,L.Ferro,M.Frau,L.Gallot,A.Lerda,andI.Pesando,JHEP07,092(2009). [11] M.Billo,M.Frau,F.Fucito,andA.Lerda,JHEP11,012(2006). [12] F.Fucito,J.F.Morales,andR.Poghossian,JHEP10,041(2009). [13] M.Billo,L.Gallot,A.Lerda,andI.Pesando,JHEP11,041(2010). [14] F.Fucito,J.Morales,andD.Pacifici,arXiv:1106.3526[hep-th]. [15] M.Billo,M.Frau,L.Gallot,andA.Lerda,JHEP1111,077(2011). [16] D.FinnellandP.Pouliot,Nucl.Phys.B453,225–239(1995). [17] R.FlumeandR.Poghossian,Int.J.Mod.Phys.A18,2541(2003).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.