Non-perturbative gauge couplings from holography MarcoBillo`1∗,MarialuisaFrau1,LucaGiacone1,andAlbertoLerda2 1 DipartimentodiFisica,Universita`diTorino andI.N.F.N.-sezionediTorino,ViaP.Giuria1,I-10125Torino,Italy 2 DipartimentodiScienzeeInnovazioniTecnologiche,Universita`delPiemonteOrientale andI.N.F.N.-GruppoCollegatodiAlessandria,VialeT.Michel11,I-15121Alessandria,Italy 2 1 Keywords F-theory,gravitydual,non-perturbativecorrections. 0 WeshowhowD-instantoncorrectionsmodifythedilaton-axionprofileemittedbyanO7/D7systemturning 2 itintothenon-singularF-theorybackgroundwhichcorrespondstotheeffectivecouplingonaD3probe. n a J 0 2 1 Introduction ] h WeconsiderthelocallimitofTypeI′stringtheorywithN D7branesclosetoanO7planeandstudythe t f - profileofthecorrespondingdilaton-axionfieldτ. Attheperturbativelevel,τ isnon-trivialandpossesses p e logarithmicsingularitiesattheorientifoldandbranepositions. Thesesingularitiesareincompatiblewith h its roˆle as string couplingconstant, and mustthereforebe resolvedbynon-perturbativeeffects, resulting [ intoanon-singularF-theorybackground. TheNf = 4casewasconsideredlongagobyA.Sen[1]who, 1 basedonthesymmetriesandmonodromypropertiesoftheTypeI′ configuration,suggestedthattheexact v dilaton-axionprofilebe givenbythe effectivecouplingofthe 4dN = 2SYM theorywith gaugegroup 1 SU(2)andN = 4flavors, asencodedin thecorrespondingSeiberg-Wittencurve[2]. Thisisthegauge f 3 theorysupportedbyaprobeD3braneinthelocalTypeI′model,andthustheF-theorybackgroundcanbe 2 interpretedasthegravitydualoftheeffectivegaugecouplingoftheD3braneworld-volumetheory[3]. 4 . Here we provide a microscopic description of how the exact F-theory background arises when D- 1 instantonsareintroducedintheD7/O7systemandshowhowtheymodifythesourcetermsintheτ field 0 2 equation[4]. ThecomputationrequiresintegratingovertheD-instantonmodulispaceandthisisdonevia 1 localization techniques [5,6] that allow to obtain explicit results even when all instanton numbers con- : tribute. Inthiswaywedemonstratehowthenon-perturbativecorrectionstotheeffectivegaugecoupling v i are incorporatedin the dualgravitationalsolution. Theagreementoftheexactdilaton-axionprofilethus X obtainedwith the couplingconstantofthe D3 branegaugetheorypersists allthe way downto N = 0, f r whichamountstosaythatanO7planeplusitsD-instantoncorrectionsrepresentsthegravitationalsource a forthegaugecouplingofthepureSU(2)N =2SYMtheoryin4d. The local configuration we consider contains N D7 branes; the massless excitations of the D7/D7 f open strings describe a gauge theory in eight dimensions and the orientifold projection implies that its gaugegroupisSO(N ). Thesedegreesoffreedomcanbeassembledintoanadjointchiralsuperfield f 1 M =m+θψ+ θγµνθF +··· . (1) µν 2 A D3-brane(plusits orientifoldimage)in thisbackgroundsupportsa four-dimensionalSp(1) ∼ SU(2) gauge theory with N hypermultiplets, arising from the D3/D7 strings, and flavor group SO(N ). For f f N = 4 this theory has vanishing β-function, and we will mostly consider this case, except in the last f section. ∗ Correspondingauthor E-mail:[email protected],Phone:+390116707213,Fax:+390116707214. 2 M.Billo`,M.Frau,L.Giacone,andA.Lerda:Holographiccouplings The transverse space to the O7 plane and the D7 branes (parametrized by a complex coordinate z) correspondsto the Coulomb branchof the modulispace of the theory: placing the probeD3 brane in z (and its image in −z) amounts to give a vacuum expectation value φ = (a,−a), with a = z , to cl 2πα′ the SU(2) complex adjoint scalar. On the other hand, displacing the D7 branes in z (i = 1,...,N ) i f correspondstogivingavacuumexpectationvalue z m =(m ,...,m ,−m ,...,−m ), with m = i , (2) cl 1 Nf 1 Nf i 2πα′ totheSO(N )complexadjointscalarmofeq.(1).IntheD3braneeffectiveaction,them ’srepresentthe f i massesofthehypermultiplets,whiletheroˆleofthecomplexifiedgaugecouplingisplayedbythedilaton- axion field τ belonging to the closed string sector. Actually, τ is the first componentof a chiral scalar superfieldT inwhichallrelevantmasslessclosedstringsdegreesoffreedomcanbeorganizedandwhich isschematicallygivenby[7] T =τ +θλ+···+2θ8 ∂4τ¯+··· , (3) (cid:0) (cid:1) where∂ standsfor ∂ . BoththeO7planeandtheD7branescoupletoT andproduceanon-trivialprofile ∂z for it. This fact allows to establish an explicit gauge/gravityrelation: the effective couplingτ(a) of the SU(2)theoryontheprobeD3braneisthedilaton-axionbackgroundτ(z)producedbytheD7/O7system. Suchabackgroundisna¨ıvely(i.e. perturbatively)singularbut,aswewillshowinthenextsections,itcan be promotedto a full-fledgednon-singularF-theorybackgroundby takingintoaccountnon-perturbative D-instantoncorrections. Onthegaugetheoryside,thisamountstopromotetheperturbativeSU(2)gauge couplingtotheexactoneencodedinthecorrespondingSeiberg-Wittencurve. 2 The dilaton-axionprofile Aswementionedabove,theD7branesandtheO7planeactassourcesforτ, localizedinthetransverse directions. Theclassicalperturbativedilaton-axionprofilecorrespondingtoN = 4D7branesplacedin f z isgivenby i 4 z−z z+z ∞ (2πα′)2ℓ trm2ℓ 2πiτ (z)=2πiτ + log i +log i =2πiτ − cl , (4) cl 0 Xh z z i 0 X 2ℓ z2ℓ i=1 ℓ=1 where in the second step we used eq.(2). This profile, which matches the 1-loop running of the gauge couplingoftheSU(2)SYMtheorywithN =4flavors,canbeobtainedbycomputingthe1-pointfunction f oftheτ emissionvertexwiththeboundarystatesoftheD7branesandthecrosscapstateoftheO7plane. Thedilaton-axion(4)solvestheequationofmotion(cid:3)τ =J δ2(z),wheretheclassicalcurrent cl cl ∞ (2πα′)2ℓ J =−2i trm2ℓ ∂2ℓ (5) cl (2ℓ)! cl X ℓ=1 arisesfrominteractionsontheD7world-volumebetweenτ andtheSO(8)adjointscalarmwhenthelatter isfrozentoitsvacuumexpectationvalue(2). Suchinteractionscanbeobtainedfromasourceactionofthe form 1 S = − d8xJ τ¯ (6) source (2π)3(2πα′)4Z cl where the dimensionful coefficient is the ratio of the D7 brane tension and the gravitational coupling constant,whichistheappropriatenormalizationforaD7sourceaction[4]. UsingthesuperfieldsM and Holographiccouplings 3 T ofeq.s(1)and(3),we caneasilyrealizethattheaboveinteractionscanbederivedfromthefollowing perturbative8dprepotential (2πα′)2ℓ−4 F (M,T)=2πi tr M2ℓ∂2ℓ−4T . (7) cl (2ℓ)! X ℓ ComparingthecorrespondingclassicalactionS = 1 d8xd8θ F (M,T)withthedefinition(6)of cl (2π)4 cl thesourceaction,wethusobtain R (2πα′)4 δF (2πα′)4 J =− cl ≡ − δ¯F , (8) cl 2π δ(θ8τ¯)(cid:12)(cid:12)T=τ0,M=mcl 2π cl (cid:12) whereweintroducedthehandynotationδ¯⋆ ≡ δ⋆ . From this analysis it is clear how one shouldδ(pθ8rτo¯)c(cid:12)eTe=dτt0o,Mo=btmaicnl the complete dilaton-axionsource J. (cid:12) Onehasfirsttopromotetheclassicalprepotentialtothefullonebyincludingnon-perturbativecorrections, i.e. F(M,T)=F (M,T)+F (M,T),andthenwrite,inanalogytoeq.(8),J =−(2πα′)4 δ¯F. cl n.p. 2π Thenon-perturbativecontributiontotheprepotentialariseswhenD-instantonsareaddedtotheD7/O7 system; in thiscase newtypesofexcitationsappearcorrespondingtoopenstringswith atleastoneend- point on the instantonic branes, i.e. D(–1)/D(–1)or D(–1)/D7 strings. Due to the boundaryconditions, theseexcitationsdonotdescribedynamicaldegreesoffreedombutaccountinsteadfortheinstantonmod- uli,whichwecollectivelydenotebyM ,wherek istheinstantonnumber. Amongthem,onefindsthe (k) coordinatesofthecenterofmassandtheirfermionicpartners,whichcanbeidentifiedwiththe8dsuper- spacecoordinatesxandθ, respectively. Theinteractionsamongthemoduliareencodedintheinstanton actionandcanbecomputedsystematicallybystringdiagramsasdescribedinRef.s[8,9]. Inthecaseat hand,theinstantonactioncanbewrittenas S (M ,M,T)=S(M )+S(M ,M)+S(M ,T) (9) inst (k) (k) (k) (k) whereS(M )isthepuremoduliaction,whichcorrespondstotheADHMmeasureonthemodulispace, (k) S(M ,M)isthemixedmoduli/gaugefieldsactionandfinallyS(M ,T)isthemixedmoduli/gravity (k) (k) action.Herewefocusonthemostrelevantpartforourgoal,namelyS(M ,T),andrefertotheliterature (k) for the other terms[4,10]. To obtain S(M ,T), we compute mixed open/closedstring disk diagrams (k) involvinginstanton moduliand bulk fields. The simplest diagramsyield the “classical” instantonaction −2πikτ supersymmetrizedbyinsertionsofθmoduli,sothatτ getsreplacedbythesuperfieldT,resulting in−2πikT. OthermixeddiagramscontributingtoS(M ,M)involvethebosonicmodulusχ,whichis (k) akintothepositionoftheD(–1)’sinthetransversespacetotheD7’s,butwithanti-symmetricChan-Paton indices due to the orientifoldprojection. Such diagramsturn out to be exactly computable, even if they involveanarbitrary(even)numberofχinsertions. Moreover,theyaresupersymmetrizedbyθ-insertions thatpromoteallτ occurrencestoT.Altogether,themixedmoduli/gravityactionis[4] ∞ (2πα′)2ℓ S(M ,T)=−2πi tr(χ2ℓ)p¯2ℓT , (10) (k) (2ℓ)! X ℓ=0 wherep¯isthemomentumconjugatetoz. Giventhecompleteinstantonaction(9),onecanobtainthenon-perturbativeeffectiveactionontheD7 branesbyperforminganintegralovertheD(–1)modulispace,namely Sn.p. = Z dM(k)e−Sinst(M(k),M,T) =Z d8xd8θFn.p.(M,T), (11) X k where in the last step we have explicitly exhibited the integral over the superspace coordinates x and θ todefinethenon-perturbativeprepotential. Thelatterthereforearisesfromanintegraloverallremaining 4 M.Billo`,M.Frau,L.Giacone,andA.Lerda:Holographiccouplings instantonmoduli,alsocalledcenteredmoduli.Suchanintegralcanbeexplicitlycomputedusinglocaliza- tion techniques[5,6]. Thisamountsto selectoneof thepreservedsuperchargesasa BRST chargeQso thattheinstantonaction(9)isQ-exact,andtoorganizetheinstantonmoduliinBRSTdoubletssothatthe integraloverthemreducestotheevaluationofdeterminantsaroundthefixedpointsofQ. Inordertohave isolatedfixedpoints,theinstantonactionmustbedeformedbysuitableparameters(toberemovedatthe end)which in ourset-uparise froma particularRR graviphotonbackground[10,11]. Here, we will not delveintothedetailsbutsimplyrecalltheessentialingredientsoftheprocedure. Onefirstintroducesthek-instantonpartitionfunctionZ accordingto k Zk =Z dM(k)e−Sinst(M(k),M,T;E), (12) whereE isthedeformationparameter.Then,settingq =e2πiτ0 andZ0 =1,onewritesthegran-canonical partitionfunctionZ = ∞ qkZ ,fromwhichoneobtainsthenon-perturbativeprepotential k=0 k P ∞ F = lim ElogZ = qkF . (13) n.p. k E→0 X k=1 Forexample,F1 =limE→0EZ1,F2 =limE→0E Z2−21Z12 andsoon.Incompleteanalogywitheq.(8), onethen writestheinstanton-inducedsourcefor(cid:0)the dilaton(cid:1)-axionasJ = −(2πα′)4 δ¯F , so thatits n.p. 2π n.p q-expansion involves the variations δ¯F , which in turn are related to the variations δ¯Z . For example, k k δ¯F1 = limE→0Eδ¯Z1, δ¯F2 = limE→0E δ¯Z2 −Z1δ¯Z1 and so on. Given the explicit form (10) of the moduliaction,itreadilyfollowsthat (cid:0) (cid:1) ∞ δ¯Z =4πi (2πα′)2ℓp¯2ℓ+4Z(2ℓ), (14) k k X ℓ=0 whereweintroducedthe“correlators”oftheχ-moduliintheinstantonmatrixtheory 1 Zk(2ℓ) = (2ℓ)! ZdM(k) tr(χ2ℓ)e−Sinst(M(k),M,T;E)(cid:12)(cid:12)T=τ0,M=mcl . (15) (cid:12) Atthefirsttwoinstantonnumbersonefinds ∞ δ¯F =4πi (2πα′)2ℓp¯2ℓ+4 lim EZ(2ℓ), 1 X E→0 1 ℓ=0 (16) ∞ δ¯F =4πi (2πα′)2ℓp¯2ℓ+4 lim E Z(2ℓ)−Z Z(2ℓ) , 2 Xℓ=0 E→0 (cid:0) 2 1 1 (cid:1) and similar expressionscan be easily obtained for any k. The same combinationsof partition functions Z andχ-correlatorsZ(2ℓ)appearinthecomputationoftheD-instantoncontributionstoaratherdifferent k k classofobservables,namelytheprotectedcorrelatorshtrmJiformingthechiralringoftheSO(8)gauge theory defined in the 8d world-volume of the D7 branes. The non-perturbative part of the chiral ring elementshaveaq-expansion,htrmJi = ∞ qkhtrmJi , whichcanbeexplicitlycomputedusing n.p. k=1 k localizationtechniquesasdiscussedinRef.[1P2]. Atthefirsttwoinstantonnumbersonefinds (−1)ℓ (−1)ℓ lim EZ(2ℓ) = htrm(2ℓ+4)i , lim E Z(2ℓ)−Z Z(2ℓ) = htrm(2ℓ+4)i (17) E→0 1 (2ℓ+4)! 1 E→0 (cid:0) 2 1 1 (cid:1) (2ℓ+4)! 2 and so on. Using these results, we therefore find a very strict relation between the δ¯ variation of the prepotentialandthenon-perturbativeSO(8)chiralring[13–15],namely ∞ (−1)ℓ δ¯F =4πi (2πα′)2ℓp¯2ℓ+4 htrm2ℓ+4i , (18) k (2ℓ+4)! k X ℓ=0 Holographiccouplings 5 which,takingintoaccountthefactthathtrm2i =0forallk,impliesthat k (2πα′)4 ∞ ∞ (2πα′)2ℓp¯2ℓ J =− qkδ¯F =−2i (−1)ℓ htrm2ℓi . (19) n.p. 2π k (2ℓ)! n.p. X X k=1 ℓ=1 Addingthisexpression(rewritteninthe z coordinatespace)tothe classicaltermJ ofeq.(8) yieldsthe cl completesourceJ. Solvingthefieldequation(cid:3)τ =Jδ2(z),wegetthentheexactdilaton-axionprofile ∞ (2πα′)2ℓ htrm2ℓi (2πα′)m 2πiτ(z)=2πiτ − =2πiτ + logdet 1− . (20) 0 X 2ℓ z2ℓ 0 D (cid:16) z (cid:17)E ℓ=1 At the perturbative level, eq.(4) expressed that fact that the quantities trm2ℓ of the D7 theory act as a cl source for the dilaton-axion. This source, however, is non-perturbativelycorrected and the exact result is obtainedbyreplacingthe classicalvacuumexpectationvalueswiththe fullquantumcorrelatorsin the D7-branetheory,namelytrm2ℓ ≡ trhm2ℓi → htrm2ℓi. Furthermore,introducingtheoperator cl 1 (2πα′)m O (z)=τ + logdet 1− (21) τ 0 2πi (cid:16) z (cid:17) wecanrewriteeq.(20)asτ(z)= O (z) ,whichhasthetypicalformofaholographicrelation. τ (cid:10) (cid:11) 3 Comparisonwithgaugetheory results Aswesaidabove,thechiralringelementshtrm2ℓiareexplicitlycomputablevialocalizationandforthe first few valuesofℓ theirinstantonexpansioncan be foundin Ref. [12]. Using these resultsin (20) and parametrizingthe transversedirectionswith z = 2πα′a in such a way thatall α′ factorsin the τ profile are reabsorbed, we get an expression τ(a) that, by direct comparison, can be seen to be exactly equal to the large-a expansion of the low-energy effective coupling of the SU(2) SYM theory with N = 4 f massiveflavors,asderivedfromtheSeiberg-Wittencurve[13]. Wecanthereforerephrasethisresultinthe followingrelation τ (z)⇔τ (a) (22) sugra gauge wherea = z representsthe Coulombbranchparameter. Itis interestingtoremarkthatonthesuper- 2πα′ gravity side the non-perturbativecontributions to the dilaton-axion profile τ (z) are due to “exotic” sugra instantonconfigurationsinthe8dworld-volumetheoryontheD7branes,whileonthegaugetheoryside thenon-perturbativeeffectsinτ (a)arisefromstandardgaugeinstantonsinthe4dSYMtheory.These gauge twotypesofcontributionsagreebecausetheyactuallyhavethesamemicroscopicorigin:inbothcasesthey areduetoD(–1)branes,whichrepresent“exotic”instantonsfortheD7/O7systemandordinaryinstantons fortheprobeD3branesupportingthe4dSYMtheory. Therelation(22)canobviouslybeusedintwoways. Ontheonehand,itcanbeusedtoreadthegauge couplingconstantofthe4dSU(2)theoryintermsofthequantumcorrelatorsinthe8dtheorywhichgauges itsSO(8)flavorsymmetry. Thisistheapproachwehavediscussedsofar. Ontheotherhand,therelation (22)canbeusedtoreadthe8dchiralringelementsintermsofthe4dgaugecoupling.Actuallythiscanbe doneinanexactway,i.e. toallordersinq. Infact,usingrecursionrelationsofMatonetype,itispossible toextractfromtheSeiberg-Wittencurvetheexactexpressionofanygivencoefficientoftheexpansionof τ (a)ininversepowersofa. Forexample,fromtheexactcoefficientof 1 wecandeducethat gauge a4 htrm4i=E (q)R2−6θ4(q)T +6θ4(q)T (23) 2 4 1 2 2 whereE istheEisensteinseriesof(almost)weight2,θ andθ areJacobiθ-functionsandR,T andT 2 2 4 1 2 arethequadraticandquarticSO(8)massinvariants(seeRef.[15]fordetails). Thisexpressionresumsthe instantonexpansion ∞ qkhtrm4i inwhichonlythefirstfewtermswereknownbydirectevaluation, k=1 k andcanbegeneralizePdtoallotherchiralringelements. 6 M.Billo`,M.Frau,L.Giacone,andA.Lerda:Holographiccouplings 4 The pure SU(2)theory The gauge/gravity relation (22) can be established also when some or all flavors are decoupled to re- cover the asymptotically free theories with N = 3,2,1,0. In particular, from the gauge theory side f one can reach the pure SU(2) case by sending q → 0 and m → ∞, while keeping the combination i qm m m m ≡ Λ4 finite. Λ4 isthedimensionfulcountingparameterintheinstantonexpansionwhich 1 2 3 4 replacesthedimensionlessq of thesuperconformalN = 4 theory; in otherwordsΛ canbe interpreted f asthedynamicallygeneratedscaleofthepureSU(2)theory.Fromthesupergravitysidethedecouplingof theflavorscorrespondstosendingallD7branesfarawayfromtheorigin,orequivalentlytoevaluatethe dilaton-axionτ(z)atazmuchsmallerthantheD7branepositionsinsuchawaythatonlytheorientifold O7planeactsasasourceforτ. InthiscasewecanthereforerepeatthesamestepsdescribedinSection2 andevaluatethedilaton-axionfieldemittedbyjusttheO7plane. Atthenon-perturbativelevelwhenkD-instantonsareputontheorientifoldplane,themaindifference withrespecttothecasewiththeD7’sisthatthespectrumofinstantonmodulicontainsonlyneutralmoduli corresponding to open strings of type D(–1)/D(–1). The rest of the derivation remains as before. In particulareq.s(12)and(15)arewell-definedevenintheabsenceoftheD7’s,andthusformulaslike(16) continuetohold. Forexample,onefinds 12 105 lim EZ(2ℓ) =− δ , lim E Z(2ℓ)−Z Z(2ℓ) =− δ (24) E→0 1 4! ℓ,0 E→0 (cid:0) 2 1 1 (cid:1) 4·8! ℓ,2 which are the analogue of eq.(17) for the pure SU(2) theory. Of course the interpretationas chiralring elementsin a flavortheoryis no longerpossible since thereare no flavors. Using these results andtheir generalizationsathigherinstantonnumbersk,wecanstillfindthevariationsδ¯F oftheprepotentialand k obtainfromthesethenon-perturbativesourcecurrentJ ,whosefirstinstantontermsare n.p. 12 105 J =2i Λ4(2πα′p¯)4 +Λ8(2πα′p¯)8 +··· . (25) n.p. h 4! 4·8! i Solvingthefieldequation(cid:3)τ (z)=J δ2(z)andexpressingtheresultintermsofa= z ,weget n.p. n.p. 2πα′ Λ4 105 Λ8 2πiτ (a)=3 + +··· (26) n.p. a4 32 a8 whichexactlycoincideswiththefirsttwoinstantoncontributionsasderivedfromtheSeiberg-Wittencurve [6,16,17]. After adding the perturbativepiece 2πiτ −4log 4a2 , we can therefore concludethat the 0 Λ2 full dilaton-axionprofile sourcedby an O7 plane plus its D-in(cid:0)stant(cid:1)onscompletely agreeswith the exact couplingofthepureSU(2)N =2SYMtheoryind=4. ThisworkwassupportedinpartbytheMIUR-PRINcontract2009-KHZKRX. References [1] A.Sen,Nucl.Phys.B475,562–578(1996). [2] N.SeibergandE.Witten,Nucl.Phys.B431,484–550(1994). [3] T.Banks,M.R.Douglas,andN.Seiberg,Phys.Lett.B387,278–281(1996). [4] M.Billo,M.Frau,L.Giacone,andA.Lerda,JHEP1108,007(2011). [5] G.W.Moore,N.Nekrasov,andS.Shatashvili,Commun.Math.Phys.209,77–95(2000). [6] N.A.Nekrasov,Adv.Theor.Math.Phys.7,831–864(2004). [7] J.H.Schwarz,Nucl.Phys.B226,269(1983);P.S.HoweandP.C.West,Nucl.Phys.B238,181(1984). [8] M.Billo,M.Frau,I.Pesando,F.Fucito,A.Lerda,andA.Liccardo,JHEP02,045(2003). [9] M.B.GreenandM.Gutperle,JHEP02,014(2000). [10] M.Billo,L.Ferro,M.Frau,L.Gallot,A.Lerda,andI.Pesando,JHEP07,092(2009). [11] M.Billo,M.Frau,F.Fucito,andA.Lerda,JHEP11,012(2006). [12] F.Fucito,J.F.Morales,andR.Poghossian,JHEP10,041(2009). [13] M.Billo,L.Gallot,A.Lerda,andI.Pesando,JHEP11,041(2010). [14] F.Fucito,J.Morales,andD.Pacifici,arXiv:1106.3526[hep-th]. [15] M.Billo,M.Frau,L.Gallot,andA.Lerda,JHEP1111,077(2011). [16] D.FinnellandP.Pouliot,Nucl.Phys.B453,225–239(1995). [17] R.FlumeandR.Poghossian,Int.J.Mod.Phys.A18,2541(2003).