Non-NobleMetalCatalysis Non-Noble Metal Catalysis MolecularApproachesandReactions Editedby RobertusJ.M.KleinGebbink Marc-EtienneMoret Editors AllbookspublishedbyWiley-VCH arecarefullyproduced.Nevertheless, Prof.Dr.RobertusJ.M.KleinGebbink authors,editors,andpublisherdonot OrganicChemistry&Catalysis warranttheinformationcontainedin DebyeInstituteforNanomaterials thesebooks,includingthisbook,to Science befreeoferrors.Readersareadvised UtrechtUniversity tokeepinmindthatstatements,data, Universiteitsweg99 illustrations,proceduraldetailsorother 3584CGUtrecht itemsmayinadvertentlybeinaccurate. Netherlands LibraryofCongressCardNo.: appliedfor Dr.Marc-EtienneMoret OrganicChemistry&Catalysis BritishLibraryCataloguing-in-Publication DebyeInstituteforNanomaterials Data Science Acataloguerecordforthisbookis UtrechtUniversity availablefromtheBritishLibrary. Universiteitsweg99 3584CGUtrecht Bibliographicinformationpublishedby Netherlands theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutsche CoverImage:©juliedeshaies/ Nationalbibliografie;detailed Shutterstock bibliographicdataareavailableonthe Internetat<http://dnb.d-nb.de>. ©2019Wiley-VCHVerlagGmbH& Co.KGaA,Boschstr.12,69469 Weinheim,Germany Allrightsreserved(includingthoseof translationintootherlanguages).No partofthisbookmaybereproducedin anyform–byphotoprinting, microfilm,oranyothermeans–nor transmittedortranslatedintoa machinelanguagewithoutwritten permissionfromthepublishers. Registerednames,trademarks,etc.used inthisbook,evenwhennotspecifically markedassuch,arenottobe consideredunprotectedbylaw. PrintISBN:978-3-527-34061-3 ePDFISBN:978-3-527-69911-7 ePubISBN:978-3-527-69910-0 oBookISBN:978-3-527-69908-7 CoverDesign:Wiley Typesetting SPiGlobal,Chennai,India PrintingandBinding Printedonacid-freepaper 10 9 8 7 6 5 4 3 2 1 v Contents Preface xvii 1 ApplicationofStimuli-Responsiveand“Non-innocent”Ligands inBaseMetalCatalysis 1 AndreiChirila,BrajaGopalDas,PetrusF.Kuijpers,VivekSinha, andBasdeBruin 1.1 Introduction 1 1.2 Stimuli-ResponsiveLigands 2 1.2.1 Redox-ResponsiveLigands 3 1.2.2 pH-ResponsiveLigands 5 1.2.3 Light-ResponsiveLigands 7 1.3 Redox-ActiveLigandsasElectronReservoirs 8 1.3.1 Bis(imino)pyridine(BIP) 8 1.3.1.1 EthylenePolymerizationwithBIP 9 1.3.1.2 CycloadditionReactions 10 1.3.1.3 HydrogenationandHydro-additionReactions 12 1.3.2 OtherLigandsasElectronReservoirs 14 1.4 CooperativeLigands 15 1.4.1 CooperativeReactivitywithLigandRadicals 16 1.4.1.1 GalactoseOxidase(GoAse)anditsModels 16 1.4.1.2 AlcoholOxidationbySalenComplexes 18 1.4.2 BaseMetalCooperativeCatalysiswithLigandsActingas anInternalBase 18 1.4.2.1 Fe–PincerComplexes 19 1.4.2.2 LigandsContainingaPendantBase 20 1.5 SubstrateRadicalsinCatalysis 21 1.5.1 CarbeneRadicals 22 1.5.2 NitreneRadicals 25 1.6 SummaryandConclusions 26 References 27 2 ComputationalInsightsintoChemicalReactivityandRoad toCatalystDesign:TheParadigmofCO Hydrogenation 33 2 BhaskarMondal,FrankNeese,andShengfaYe 2.1 Introduction 33 vi Contents 2.1.1 ChemicalReactions:ConceptualThoughts 33 2.1.2 MotivationBehindStudyingCO Hydrogenation 35 2 2.1.3 ChallengesofCO Reduction 35 2 2.1.4 CO Hydrogenation 37 2 2.1.5 NoblevsNon-nobleMetalCatalysis 38 2.1.6 CO Hydrogenation:BasicMechanisticConsiderations 38 2 2.2 ReactionEnergeticsandGoverningFactor 39 2.3 NewlyDesignedCatalystsandTheirReactivity 42 2.4 CorrelationBetweenHydricityandReactivity 43 2.5 ConcludingRemarks 45 Acknowledgments 46 References 47 3 CatalysiswithMultinuclearComplexes 49 NealP.Mankad 3.1 Introduction 49 3.2 StoichiometricReactionPathways 50 3.2.1 BimetallicBindingandActivationofSubstrates 50 3.2.1.1 Small-MoleculeActivation 51 3.2.1.2 AlkyneActivation 52 3.2.2 BimetallicAnalogsofOxidativeAdditionandReductive Elimination 53 3.2.2.1 E—HAdditionandElimination 54 3.2.2.2 C—XActivationandC—CCoupling 56 3.2.2.3 C=OCleavage 57 3.3 ApplicationinCatalysis 57 3.3.1 CatalysiswithReactiveMetal–MetalBonds 58 3.3.1.1 BimetallicAlkyneCycloadditions 58 3.3.1.2 BimetallicOxidativeAddition/ReductiveEliminationCycling 59 3.3.2 BifunctionalandTandemCatalysiswithoutMetal–Metal Bonds 59 3.3.2.1 CooperativeActivationofUnsaturatedSubstrates 59 3.3.2.2 CooperativeProcesseswithBimetallicOxidativeAdditionand/or ReductiveElimination 62 3.4 PolynuclearComplexes 64 3.5 Outlook 65 Acknowledgments 66 References 66 4 Copper-CatalyzedHydrogenationsandAerobicN—NBond Formations:AcademicDevelopmentsandIndustrial Relevance 69 PaulL.AlstersandLaurentLefort 4.1 Introduction 69 4.2 Cu-PromotedN—NBondFormation 70 4.2.1 NoncyclizationN—NorN=NBondFormations 71 Contents vii 4.2.1.1 N—NSingle-Bond-FormingReactions 71 4.2.1.2 N=NDoubleBond-FormingReactions 72 4.2.2 CyclizationN—NBondFormations 74 4.2.2.1 DehydrogenativeCyclizations 77 4.2.2.2 EliminativeCyclizations 80 4.2.2.3 EliminativeDehydrogenativeCyclizations 81 4.3 Cu-CatalyzedHomogeneousHydrogenation 82 4.3.1 HydrogenationofCO toFormateandDerivatives 84 2 4.3.2 HydrogenationofCarbonylCompounds 86 4.3.3 HydrogenationofOlefinsandAlkynes 89 4.4 Conclusions 91 References 92 5 C=CHydrogenationswithIronGroupMetalCatalysts 97 TimN.GieshoffandAxelJ.vonWangelin 5.1 Introduction 97 5.2 Iron 99 5.2.1 Introduction 99 5.2.2 PincerComplexes 100 5.2.3 Others 106 5.3 Cobalt 107 5.3.1 Introduction 107 5.3.2 PincerComplexes 108 5.3.3 Others 115 5.4 Nickel 118 5.4.1 Introduction 118 5.4.2 PincerComplexes 119 5.4.3 Others 121 5.5 Conclusion 122 Acknowledgments 123 References 123 6 BaseMetal-CatalyzedAdditionReactionsAcrossC—CMultiple Bonds 127 RodrigoRamírez-ContrerasandBillMorandi 6.1 Introduction 127 6.2 CatalyticAdditiontoAlkenesInitiatedThroughRadical Mechanisms 128 6.2.1 HydrogenAtomTransferasaGeneralApproachto HydrofunctionalizationofUnsaturatedBonds 128 6.2.2 HydrazinesandAzidesviaHydrohydrazinationand HydroazidationofOlefins 128 6.2.2.1 Co-andMn-CatalyzedHydrohydrazination 128 6.2.2.2 Cobalt-andManganese-CatalyzedHydroazidationofOlefins 130 6.2.3 Co-CatalyzedHydrocyanationofOlefinswithTosylCyanide 133 6.2.4 Co-CatalyzedHydrochlorinationofOlefinswithTosyl Chloride 133 viii Contents 6.2.5 FeIII/NaBH -MediatedAdditionsofUnactivatedAlkenes 134 4 6.2.6 Co-CatalyzedMarkovnikovHydroalkoxylationofUnactivated Olefins 135 6.2.7 Fe-CatalyzedHydromethylationofUnactivatedOlefins 137 6.2.8 HydroaminationofOlefinsUsingNitroarenes toObtainAnilines 137 6.2.9 Dual-CatalyticMarkovnikovHydroarylationofAlkenes 139 6.3 OtherCatalyticAdditionstoUnsaturatedBondsProceeding ThroughInitialR⋅(R≠H)Attack 139 6.3.1 Cu-CatalyzedTrifluoromethylationofUnactivatedAlkenes 139 6.3.2 Mn-CatalyzedAerobicOxidativeHydroxyazidation ofAlkenes 139 6.3.3 Fe-CatalyzedAminohydroxylationofAlkenes 141 6.4 CatalyticAdditiontoAlkenesInitiatedThroughPolar Mechanisms 143 6.4.1 Cu-CatalyzedHydroaminationofAlkenesandAlkynes 143 6.4.2 Ni-Catalyzed,Lewis-acid-AssistedCarbocyanation ofAlkynes 147 6.4.3 Ni-CatalyzedTransferHydrocyanation 148 6.5 HydrosilylationReactions 150 6.5.1 Fe-Catalyzed,Anti-MarkovnikovHydrosilylationofAlkeneswith TertiarySilanesandHydrosiloxanes 150 6.5.2 HighlyChemoselectiveCo-CatalyzedHydrosilylationof FunctionalizedAlkenesUsingTertiarySilanesand Hydrosiloxanes 151 6.5.3 AlkeneHydrosilylationUsingTertiarySilaneswithα-DiimineNi Catalysts 151 6.5.4 ChemoselectiveAlkeneHydrosilylationCatalyzedbyNiPincer Complexes 154 6.5.5 Fe-andCo-CatalyzedRegiodivergentHydrosilylation ofAlkenes 155 6.5.6 Co-CatalyzedMarkovnikovHydrosilylationofTerminalAlkynesand Hydroborylationofα-Vinylsilanes 155 6.5.7 FeandCoPivalateIsocyanide-LigatedCatalystSystemsfor HydrosilylationofAlkeneswithHydrosiloxanes 157 6.6 Conclusion 159 References 160 7 Iron-CatalyzedCyclopropanationofAlkenesbyCarbene TransferReactions 163 DanielaIntrieri,DanielaM.Carminati,andEmmaGallo 7.1 Introduction 163 7.2 AchiralIronPorphyrinCatalysts 165 7.3 ChiralIronPorphyrinCatalysts 172 7.4 IronPhthalocyaninesandCorroles 176 7.5 IronCatalystswithNorN,OLigands 180 7.6 The[Cp(CO) FeII(THF)]BF Catalyst 184 2 4 Contents ix 7.7 Conclusions 186 References 187 8 NovelSubstratesandNucleophilesinAsymmetric Copper-CatalyzedConjugateAdditionReactions 191 RavindraP.Jumde,SyuzannaR.Harutyunyan,andAdriaanJ.Minnaard 8.1 Introduction 191 8.2 CatalyticAsymmetricConjugateAdditionstoα-Substituted α,β-UnsaturatedCarbonylCompounds 192 8.3 CatalyticAsymmetricConjugateAdditionsto Alkenyl-heteroarenes 196 8.3.1 ABriefOverviewofAsymmetricNucleophilicConjugate AdditionstoAlkenyl-heteroarenes 197 8.3.2 Copper-CatalyzedAsymmetricNucleophilicConjugate AdditionstoAlkenyl-heteroarenes 198 8.4 Conclusion 205 References 207 9 AsymmetricReductionofPolarDoubleBonds 209 RaphaelBigler,LorenaDeLuca,RaffaelHuber,andAntonioMezzetti 9.1 Introduction 209 9.1.1 CatalyticApproachesforPolarDoubleBondReduction 209 9.1.2 TheRoleofHydrideComplexes 210 9.1.3 LigandChoiceandCatalystStability 211 9.2 Manganese 211 9.3 Iron 212 9.3.1 IronCatalystsinAsymmetricTransferHydrogenation(ATH) 213 9.3.2 IronCatalystsinAsymmetricDirect(H )Hydrogenation(AH) 218 2 9.3.3 IronCatalystsinAsymmetricHydrosilylation(AHS) 220 9.4 Cobalt 223 9.4.1 CobaltCatalystsintheAHofKetones 223 9.4.2 CobaltCatalystsintheATHofKetones 224 9.4.3 CobaltCatalystsinAsymmetricHydrosilylation 225 9.4.4 AsymmetricBorohydrideReductionandHydroboration 226 9.5 Nickel 228 9.5.1 NickelCatalystsinAsymmetricH Hydrogenation 228 2 9.5.2 NickelATHCatalysts 228 9.5.3 NickelAHSCatalysts 229 9.5.4 Nickel-CatalyzedAsymmetricBorohydrideReduction 230 9.5.5 Ni-CatalyzedAsymmetricHydroborationofα,β-Unsaturated Ketones 230 9.6 Copper 231 9.6.1 Copper-CatalyzedAH 231 9.6.2 Copper-CatalyzedATHofα-Ketoesters 232 9.6.3 Copper-CatalyzedAHSofKetonesandImines 232 9.7 Conclusion 235 References 235 x Contents 10 Iron-,Cobalt-,andManganese-CatalyzedHydrosilylationof CarbonylCompoundsandCarbonDioxide 241 ChristopheDarcel,Jean-BaptisteSortais,DuoWei,and AntoineBruneau-Voisine 10.1 Introduction 241 10.2 HydrosilylationofAldehydesandKetones 241 10.2.1 Iron-CatalyzedHydrosilylation 242 10.2.2 Cobalt-CatalyzedHydrosilylation 247 10.2.3 Manganese-CatalyzedHydrosilylation 248 10.3 ReductionofIminesandReductiveAminationofCarbonyl Compounds 251 10.4 ReductionofCarboxylicAcidDerivatives 252 10.4.1 CarboxamidesandUreas 252 10.4.2 CarboxylicEsters 254 10.4.3 CarboxylicAcids 257 10.5 HydroelementationofCarbonDioxide 258 10.5.1 HydrosilylationofCarbonDioxide 258 10.5.2 HydroborationofCarbonDioxide 259 10.6 Conclusion 260 References 261 11 ReactiveIntermediatesandMechanisminIron-Catalyzed Cross-coupling 265 JaredL.Kneebone,JeffreyD.Sears,andMichaelL.Neidig 11.1 Introduction 265 11.2 Cross-couplingCatalyzedbySimpleIronSalts 266 11.2.1 MethodsOverview 266 11.2.2 MechanisticInvestigations 267 11.3 TMEDAinIron-CatalyzedCross-coupling 273 11.3.1 MethodsOverview 273 11.3.2 MechanisticInvestigations 275 11.4 NHCsinIron-CatalyzedCross-coupling 276 11.4.1 MethodsOverview 276 11.4.2 MechanisticInvestigations 279 11.5 PhosphinesinIron-CatalyzedCross-coupling 283 11.5.1 MethodsOverview 283 11.5.2 MechanisticInvestigations 285 11.6 FutureOutlook 291 Acknowledgments 291 References 291 12 RecentAdvancesinCobalt-CatalyzedCross-coupling Reactions 297 OriolPlanas,ChristopherJ.Whiteoak,andXaviRibas 12.1 Introduction 297 12.2 Cobalt-CatalyzedC—CCouplingsThroughaC—HActivation Approach 299 Contents xi 12.2.1 Low-ValentCobaltCatalysis 299 12.2.2 High-ValentCobaltCatalysis 302 12.3 Cobalt-CatalyzedC—CCouplingsUsingaPreactivatedSubstrate Approach(ArylHalidesandPseudohalides) 308 12.3.1 ArylorAlkenylHalides,C(sp2)–X 308 12.3.2 AlkylHalides,C(sp3)–X 309 12.3.3 AlkynylHalides,C(sp)–X 311 12.3.4 ArylHalidesWithoutOrganomagnesium 311 12.4 Cobalt-CatalyzedC—XCouplingsUsingC—HActivation Approaches 312 12.4.1 C—NBondFormation 313 12.4.2 C—OandC—SBondFormation 317 12.4.3 C—XBondFormation(X=Cl,Br,I,andCN) 318 12.5 Cobalt-CatalyzedC—XCouplingsUsingaPreactivatedSubstrate Approach(ArylHalidesandPseudohalides) 320 12.5.1 C(sp2)–SCoupling 320 12.5.2 C(sp2)–NCoupling 321 12.5.3 C(sp2)–OCoupling 322 12.6 Miscellaneous 322 12.7 ConclusionsandFutureProspects 323 Acknowledgments 323 References 324 13 TrifluoromethylationandRelatedReactions 329 JérémyJacquet,LouisFensterbank,andMarineDesage-ElMurr 13.1 TrifluoromethylationReactions 329 13.1.1 Copper(I)SaltswithNucleophilicTrifluoromethylSources 329 13.1.1.1 ReactionswithElectrophiles 330 13.1.1.2 ReactionswithNucleophiles:OxidativeCoupling 331 13.1.2 GenerationofCF •RadicalsUsingLanglois’Reagent 332 3 13.1.3 CopperandElectrophilicCF +Sources 333 3 13.2 TrifluoromethylthiolationReactions 341 13.2.1 NucleophilicTrifluoromethylthiolation 342 13.2.1.1 Copper-CatalyzedNucleophilicTrifluoromethylthiolation 342 13.2.1.2 Nickel-CatalyzedNucleophilicTrifluoromethylthiolation 344 13.2.2 ElectrophilicTrifluoromethylthiolation 345 13.3 PerfluoroalkylationReactions 348 13.4 Conclusion 350 References 350 14 CatalyticOxygenationofC=CandC—HBonds 355 PradipGhosh,Marc-EtienneMoret,andRobertJ.M.KleinGebbink 14.1 Introduction 355 14.2 OxygenationofC=CBonds 356 14.2.1 ManganeseCatalysts 356 14.2.2 IronCatalysts 363 14.2.3 Cobalt,Nickel,andCopperCatalysts 372