ebook img

Non-LTE abundances of Mg and K in extremely metal-poor stars and the evolution of [O/Mg], [Na/Mg], [Al/Mg] and [K/Mg] in the Milky Way PDF

0.44 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Non-LTE abundances of Mg and K in extremely metal-poor stars and the evolution of [O/Mg], [Na/Mg], [Al/Mg] and [K/Mg] in the Milky Way

1 Astronomy (DOI:willbeinsertedbyhandlater) & (cid:13)c ESO2010 Astrophysics Non-LTE abundances of Mg and K in extremely metal-poor stars and the evolution of [O/Mg], [Na/Mg], [Al/Mg] and [K/Mg] in the ⋆ Milky Way. S.M.Andrievsky1,2,M.Spite1,S.A.Korotin2,F.Spite1,P.Bonifacio1,3,4,R.Cayrel1,P.Franc¸ois1,andV.Hill5 1 GEPI, Observatoire de Paris, CNRS, Universite´ Paris Diderot; F-92125 Meudon Cedex, France, e-mail : [email protected] 2 Department of Astronomy and Astronomical Observatory, Odessa National University, Isaac Newton Institute of Chile, Odessa 0 branch,ShevchenkoPark,65014Odessa,Ukraine,e-mail:[email protected] 1 3 CIFISTMarieCurieExcellenceTeam 0 4 IstitutoNazionalediAstrofisica,OsservatorioAstronomicodiTrieste,ViaTiepolo11,I-34143Trieste,Italy 2 5 ObservatoiredelaCotedAzur,CNRSUMR6202,BP4229,06304NiceCedex4,France n a J ABSTRACT 8 Aims.LTEabundancesoflightelementsinextremelymetal-poor(EMP)starshavebeenpreviouslyderivedfromhighqualityspectra. ] A Newderivations,freefromtheNLTEeffects,willbetterconstrainthemodelsoftheGalacticchemicalevolutionandtheyieldsofthe veryfirstsupernovae. G Methods.TheNLTEprofilesofthemagnesiumandpotassiumlineshavebeencomputedinasampleof53extremelymetal-poorstars . withamodifiedversionoftheprogramMULTIandadjustedtotheobservedlinesinordertoderivetheabundancesoftheseelements. h Results.The NLTE corrections for magnesium and potassium are in good agreement with the works found in the literature. The p abundances are slightly changed, reaching a better precision: the scatter around the mean of the abundance ratios has decreased. - Magnesiummaybeusedwithconfidenceasreferenceelement.TogetherwithpreviouslydeterminedNLTEabundancesofsodium o andaluminum,thenewratiosaredisplayed,forcomparison,alongthetheoreticaltrendsproposedbysomemodelsofthechemical r t evolutionoftheGalaxy,usingdifferentmodelsofsupernovae. s a Keywords.Galaxy:abundances–Galaxy:halo–Galaxy:evolution–Stars:abundances–Stars:mixing–Stars:Supernovae [ 1 v 1. Introduction sive nucleosynthesis, mixing and fallback episodes and possi- 7 blelateSNIacontributions.Magnesiumis,inprinciple,abetter 0 In the frame of the ESO Large Program ”First stars, first nu- choicesince thiselementis mainlyformedin massive SNe, its 2 cleosynthesis” Cayrel et al. (2004) and Bonifacio et al. (2007, productionisdominatedbyhydrostaticcarbonburning,anditis 1 2009)havestudiedanhomogeneoussampleofextremelymetal- lessaffectedbyexplosiveburningandfallback(e.g.Woosley& 1. poorgiantsandturnoffstars.Foraboutfiftystars,mostofthem Weaver,1995).Amongothers,Shigeyama& Tsujimoto(1998) 0 with [Fe/H] < −3, they determine the abundances of the ele- recommendedMgratherthanFeasareferenceelement,follow- 0 ments from C to Zn, especially of the light metals Na, Mg, Al ingthesamelogic. 1 andK,intheearlyGalaxy.TheseabundancesarebasedonLTE Cayrel et al. (2004) have recognised this too and have ac- : computationsoftheequivalentwidthsorofthelineprofiles. v cordingly used magnesium as a reference element to compare Aftersodiumandaluminum(Andrievskyetal.,2007,2008) i the observed ratios [X/Mg] to the ejecta of the massive super- X wepresentherenon-LTEdeterminationsofthemagnesiumand novaeinthelastpartofthepaper.Butitappearedthatunexpect- r potassiumabundancesbycomparisonoftheobservedandcom- a putedlineprofilesandwediscusstheevolutionoftheabundance edlytherelations[X/Mg]vs. [Mg/H]weremorescatteredthan thecorrespondingrelations[X/Fe]vs.[Fe/H].Also,inBonifacio ratios [O/Mg], [Na/Mg], [Al/Mg] and [K/Mg] in the Galaxy. etal.(2009),themeanvalueof[Mg/Fe]differedsignificantlyin Recently,Takedaetal.(2009)havecomputedthenon-LTEabun- giantandturnoffstars.Asaconsequencewesuspectedthatboth danceofpotassiuminthesamesampleofEMPstars,basedon theunexpectedbehaviourofthescatteroftheratios[X/Mg]and the equivalentwidths of the potassium lines given in Cayrel et thedifferentbehaviourofdwarfsandgiantscouldbedueatleast al.(2004).Wecompareourresultswiththeirdeterminations. partlytotheneglectofthedeparturesfromLTE. InCayreletal.(2004)andBonifacioetal.(2007,2009),iron -InSect. 2wepresentthecharacteristicsoftheatomicmodels had beenfirst chosenas the main tracer ofthe chemicalevolu- usedforthenon-LTEcomputations. tion of the Galaxy. It had also been noted however,thatiron is -InSect.3arepresentedthemainparametersoftheanalysis. perhapsnotthebestchoicesincethereareseveralprocessesthat -InSect.4wediscusstheratios[Mg/Fe]and[K/Fe]intheearly affect the yield of iron : Si burning in massive SNe II, explo- Galaxy, and we compare the ratios [O/Mg], [Na/Mg], [Al/Mg] ⋆ BasedonobservationsobtainedwiththeESOVeryLargeTelescope and [K/Mg] at low metallicity to the predictions of the ejecta at Paranal Observatory (Large Programme ”First Stars”, ID 165.N- ofsupernovae/hypernovae.Finallyforacompletehalo-diskpic- 0276;P.I.:R.Cayrel. ture we havealso addedthe NLTE determinationsofthe abun- 2 Andrievsky:RelativeabundancesoflightmetalsinEMPstars dancesofNa,Mg,AlandKinthediskfromthe”Gehrenteam” 2. AtomicmodelsandNLTEcalculations (Gehrenetal.2004,2006,Mashonkinaetal.2008,andZhanget al.2006),tostudytheevolutionoftheseratiosintheGalaxyand 2.1.Magnesium tocomparethistothepredictionsofthemodelsofthechemical The atomic model of magnesium used in this work is essen- evolutionoftheGalaxy. tially the same as the onedescribed in Mishenina et al. (2004). Thismodelconsistsof84levelsof Mgi,12levelsof Mgiiand the ground level of Mgiii (Martin & Zalubas, 1980, Biemont &Brault1986).Withinthedescribedsystemthetransitionsbe- tween the 59 first levels of Mgi and the ground level of Mgii have been considered. The detailed structure of the multiplets was ignored and each LS multiplet was considered as a sin- gleterm.Thefinestructurewastakenintoaccountonlyforthe 3s3p3P0level(moredetailsinMisheninaetal.2004). 2.2.Potassium Our model of the Ki atom is based on the model of Bruls et al.(1992).Inourimplementationweconsideredindetailallthe transitionsbetweenthefirst20levelsofthe Ki andtheground level of the Kii. For the level 4p2P we took into account the finesplitting.Theotherlevelswereconsideredassinglelevels. Fifteen additional levels of Ki and 7 levels of Kii were used to allow the conservation of the number of particles. The level energiesare taken from Sugar& Corliss (1985). The oscillator strengthsofthebound-boundtransitionsaretakenfromWieseet al. (1969) as well as Biemont & Grevesse (1973). For the res- onancetransitionswe useddata fromMorton(1991). Thetotal numberofbound-boundtransitionsconsideredindetailis62. Photoionization cross-sections from the ground level of potassiumwere reportedby Rahman-Attiaet al. (1986). Forp- levelswe tookionizationcross-sectionspublishedbyAymaret al. (1976). For 2S, 2D, 2F levels the cross-sections calculated withthehelpofquantumdefectmethod(Hofsaess,1979)were used.Fortheotherlevels,weusedthehydrogen-likeapproxima- tion.Theelectroncollisionalrateswereestimatedwiththehelp oftheVanRegemorter(1962)formula,whileAllen’s(1973)for- mulawasusedforforbiddentransitions.Thecollisionalioniza- tionfromthegroundlevelwasdescribedusingthecorrespond- ingformulafromSobelmanetal.(1981).Fortheotherlevelswe usedSeaton’s(1962)formula.Totakeintoaccountcollisionsof potassiumatomswithhydrogenatomsweappliedtheformulaof Steenbock&Holweger(1984)withacorrectingfactorequalto Fig.1. Profile fittingof the magnesiumlinesin the solar spec- 0.05.AsimilarcorrectingfactorwasusedbyZhangetal.(2006). trum. Theprincipaldifferencebetweenthe LTE andNLTE-based abundancesiscausedbyanover-recombinationonthefirstlevel of the Ki atom in the atmospheres of the late-type stars. This leads to an increase of the equivalent widths of the Ki 766.5 and769.9nmlines, andasa consequencethe LTE abundances are overestimated.Detailed discussion of this effect is given in Ivanova&Shymansky(2000). 2.2.1. Fitofthesolarspectrum To verifyouradoptedatomicmodelsofmagnesiumandpotas- siumwehavecarriedoutthecomputationoftheNLTEsynthetic profiles of several magnesium and potassium lines. The Solar Flux Atlas of Kurucz (1984) in the visual and infra red range wasusedforthispurpose. Fig.2.Profilefittingofthepotassiumlinesinthesolarspectrum. The NLTE profiles have been determined with the help of themodified”MULTI”codeofCarlsson(1986).Themodifica- tions are described in Korotin et al. (1999), they include opac- itysourcesfromATLAS9(Kurucz1992).TheKurucz’s(1996) Andrievsky:RelativeabundancesoflightmetalsinEMPstars 3 modelofthesolaratmospherehasbeenusedinthesecomputa- 3.4.NLTEabundances tions. To compute NLTE profiles of the magnesium and potassium The damping constants have been taken from the Vienna lines, we have used Kurucz’s models (ATLAS9) without over- AtomicLineDataBase(VALD,Piskunovetal.,1995).Thecor- shooting(Kurucz1993).Wehavecheckedonsometypicalstars rection ∆logC found by Mishenina et al. (2004) has been ap- 6 that the use of MARCS models (Gustafsson et al., 2008) as in plied for the computation of the magnesium lines. The NLTE Cayreletal.(2004)wouldnotmakeasignificantdifference. profiles of the Mg I lines computed with log(Mg/H) = 7.57 The NLTE correctionsdepend on the effective temperature agree well with the solar spectrum (see Fig. 1 in good agree- and gravity of the model, as well as on the elementabundance mentwiththedeterminationsofGrevesse&Sauval(2000),and itself. The latter circumstance strongly suggests that the abun- of Shimanskaya (2000) who found log(Mg/H) = 7.58. The ⊙ dances must be derived individually for each star using com- potassium lines are also well reproduced by our calculations plete NLTE computation. The use of published NLTE correc- (see Fig. 2) with a potassium abundancelog(K/H) = 5.11,in ⊙ tions as a function T and logg can introduce some errors in goodagreementwiththevalueadoptedbyZhangetal.(2006), eff the derivedabundancesif the abundancesare different.For ex- andveryclosetothemeteoriticpotassiumabundance(Lodders, ample in metal-poorstars in the range −2.0 < [Fe/H] < −3.0 2003). the NLTE corrections for the potassium abundance are within the range 0.2-0.5 dex. But in the extremely metal-poor stars ([Fe/H] < −3.0) the potassium line is very weak (the equiva- 3. Analysisofthestarsample lent width of the 7699 Å line is always less than 25 mÅ and 3.1.Sampleofstars.Observationsandreduction often less than 10 mÅ); the line is thus formed rather deeply in the atmosphere where collisions are important and finally The sample of stars and the observationaldata are the same as the NLTE correction at these metallicities is small. As a con- discussed in Cayrel et al. (2004). The observations were per- sequence,the use of a uniformNLTE correction(computedby formedwiththehighresolutionspectrographUVESattheVLT Ivanova&Shymanskyforametallicityof-2.0),hasledCayrel (Dekkeret al., 2000). The resolvingpowerin the regionof the et al. (2004) to underestimatethe potassium abundanceat very magnesiumlinesisR ≈ 45,000anditisR ≈ 41,000inthere- lowmetallicity. gionofthepotassiumlines.TheS/Nratioisgenerally≈120/pix withabout5pixelsperresolutionelement.Inthisregionofthe potassiumlines,residualfringeslimittheprecisionofthemea- 1.0 surementsandinmostofthestarsalinewithanequivalentwidth 1.0 0.9 lessthan3mÅ cannotbedetected. X LU 0.8 The spectra have been reduced using the UVES context F (Ballesteretal.2000). TIVE 0.9 00..67 A EL 0.5 R 0.4 3.2.Atmosphericparameters 0.8 0.3 TheparametersoftheatmosphereofthestarsT ,logg,v and BS 16968-61 0.2 BS 16968-61 eff t [Fe/H]aregiveninTable1,andarequotedfromtheLTEanaly- 0.7 0.1 sesofCayreletal.(2004)andBonifacioetal.(2007,2009).An 5528.0 5528.5 5529.05183.0 5183.5 5184.0 ”m”inthelastcolumnofthetablemeansthattheatmosphereof λ(A) λ(A) thestar(giant)hasbeenfound”mixed”withthedeephydrogen 1.0 1.0 burninglayerbySpiteetal.(2005,2006a).Forthedetermination X0.9 0.9 oftherelativeLTEandNLTEabundances,weadoptedinthista- FLU0.8 0.8 blethesolarvalueslog(Mg/H)⊙ = 7.58andlog(K/H)⊙ = 5.12 TIVE 00..67 00..67 following Grevesse & Sauval (2000) for a better homogeneity A EL0.5 0.5 withthepreviousLTEdeterminations(Cayreletal.2004). R 0.4 0.4 0.3 0.3 HD186478 HD186478 0.2 0.2 3.3.LTEabundancesofKandMg 0.1 0.1 Asacomparison,wegiveinTable1newabundancesofmagne- 5528.0 5528.5 5529.0 5183.0 5183.5 5184.0 5184.5 sium and potassium computedwith the LTE hypothesis.These λ(A) λ(A) new determinationshave been obtained by fitting the synthetic spectrawiththeobservedprofiles. Fig.3. Magnesium. Profile fitting for two metal-poor stars For the abundance of potassium the result is sometimes with different effective temperature, with similar metallicity slightlydifferentfromthevaluepublishedinCayreletal.(2004) :[Fe/H]≈−2.8.Oneisaturnoffstar(BS16968-61),theothera because,forexample,adifferentpositionofthecontinuumhas giant(HD186478).TheMgabundancewasvariedby0.10dex beenadopted. (dottedlines). However,the difference is larger for magnesium.In Cayrel etal.(2004)theequivalentwidthsofmagnesiumlinesingiants have been often underestimated:the lines are often strong and the wings hadbeen neglected.Thiserror hasbeen correctedin The profile fitting for two metal-poor stars is displayed in Bonifacioetal.(2009).Thecorrectionisnegligibleforthemost Fig.3and4.TheNLTEmagnesiumandpotassiumabundances magnesium-poor giants, but in in the other (less Mg-poor) gi- inourprogramstarsarelistedinTable1.Inthistable,wegive ants,thedifferenceisabout0.15dex. alsoasacomparisontheabundanceoftheseelementscomputed 4 Andrievsky:RelativeabundancesoflightmetalsinEMPstars Table 1.Adoptedmodelandpotassiumabundanceforoursampleofstars.Inthelastcolumnthelettermindicatesthatthegiant hasbeenfound“mixed”(seetext). T log v LTE NLTE NLTE NLTE LTENLTENLTE NLTE eff t star (K) g (kms−1)[Fe/H] ǫ(Mg)ǫ(Mg)[Mg/H][Mg/Fe] ǫ(K) ǫ(K) [K/H][K/Fe]Rem GIANTS 01 HD2796 4950 1.5 2.1 -2.47 5.54 5.74 -1.84 0.63 3.25 2.90 -2.22 0.25 m 02 HD122563 4600 1.1 2.0 -2.82 5.29 5.39 -2.19 0.63 2.78 2.57 -2.55 0.27 m 03 HD186478 4700 1.3 2.0 -2.59 5.55 5.72 -1.86 0.73 3.10 2.85 -2.27 0.32 m 04 BD+17:3248 5250 1.4 1.5 -2.07 6.00 6.19 -1.39 0.68 3.77 3.35 -1.77 0.30 m 05 BD-18:5550 4750 1.4 1.8 -3.06 4.99 5.14 -2.44 0.62 2.63 2.45 -2.67 0.39 06 CD-38:245 4800 1.5 2.2 -4.19 3.66 4.02 -3.56 0.63 - - - - m 07 BS16467-062 5200 2.5 1.6 -3.77 3.95 4.24 -3.34 0.43 1.85 1.70 -3.42 0.35 08 BS16477-003 4900 1.7 1.8 -3.36 4.76 4.86 -2.72 0.64 2.30 2.04 -3.08 0.28 09 BS17569-49 4700 1.2 1.9 -2.88 5.36 5.47 -2.11 0.77 2.84 2.59 -2.53 0.35 m 10 CS22169-035 4700 1.2 2.2 -3.04 4.76 4.92 -2.66 0.38 2.55 2.37 -2.75 0.29 m 11 CS22172-002 4800 1.3 2.2 -3.86 3.89 4.19 -3.39 0.47 1.85 1.67 -3.45 0.41 12 CS22186-025 4900 1.5 2.0 -3.00 5.05 5.19 -2.39 0.61 2.68 2.47 -2.65 0.35 m 13 CS22189-009 4900 1.7 1.9 -3.49 4.29 4.47 -3.11 0.38 2.20 2.06 -3.06 0.43 14 CS22873-055 4550 0.7 2.2 -2.99 5.11 5.24 -2.34 0.65 2.60 2.39 -2.73 0.26 m 15 CS22873-166 4550 0.9 2.1 -2.97 5.27 5.44 -2.14 0.83 2.71 2.52 -2.60 0.37 m 16 CS22878-101 4800 1.3 2.0 -3.25 4.85 5.02 -2.56 0.69 2.35 2.16 -2.96 0.29 m 17 CS22885-096 5050 2.6 1.8 -3.78 4.13 4.39 -3.19 0.59 1.80 1.72 -3.40 0.38 18 CS22891-209 4700 1.0 2.1 -3.29 4.76 4.89 -2.69 0.60 2.35 2.15 -2.97 0.32 m 19 CS22892-052* 4850 1.6 1.9 -3.03 4.90 5.06 -2.52 0.51 2.55 2.34 -2.78 0.25 20 CS22896-154 5250 2.7 1.2 -2.69 5.22 5.52 -2.06 0.63 2.88 2.62 -2.50 0.19 21 CS22897-008 4900 1.7 2.0 -3.41 4.54 4.75 -2.83 0.58 2.20 2.02 -3.10 0.31 22 CS22948-066 5100 1.8 2.0 -3.14 4.81 4.99 -2.59 0.55 2.55 2.37 -2.75 0.39 m 23 CS22949-037* 4900 1.5 1.8 -3.97 5.07 5.16 -2.42 1.55 1.50 1.32 -3.80 0.17 m 24 CS22952-015 4800 1.3 2.1 -3.43 4.20 4.51 -3.07 0.36 2.15 1.99 -3.13 0.30 m 25 CS22953-003 5100 2.3 1.7 -2.84 5.03 5.24 -2.34 0.50 2.60 2.42 -2.70 0.14 26 CS22956-050 4900 1.7 1.8 -3.33 4.59 4.99 -2.59 0.74 2.20 2.09 -3.03 0.30 27 CS22966-057 5300 2.2 1.4 -2.62 5.39 5.69 -1.89 0.73 2.95 2.77 -2.35 0.27 28 CS22968-014 4850 1.7 1.9 -3.56 4.27 4.54 -3.04 0.52 1.83 1.77 -3.35 0.21 29 CS29491-053 4700 1.3 2.0 -3.04 5.09 5.24 -2.34 0.70 2.69 2.42 -2.70 0.34 m 30 CS29495-041 4800 1.5 1.8 -2.82 5.23 5.49 -2.09 0.73 2.91 2.63 -2.49 0.33 31 CS29502-042 5100 2.5 1.5 -3.19 4.74 5.06 -2.52 0.67 2.26 2.07 -3.05 0.14 32 CS29516-024 4650 1.2 1.7 -3.06 5.25 5.34 -2.24 0.82 - - - - 33 CS29518-051 5200 2.6 1.4 -2.69 5.27 5.56 -1.02 0.67 2.94 2.67 -2.45 0.24 m 34 CS30325-094 4950 2.0 1.5 -3.30 4.81 5.04 -2.54 0.76 2.65 2.42 -2.70 0.60 35 CS31082-001 4825 1.5 1.8 -2.91 5.21 5.49 -2.09 0.82 2.80 2.47 -2.65 0.26 TURNOFF 1 BS16023–046 6360 4.5 1.4 -2.97 4.67 4.97 -2.61 0.36 2 BS16968–061 6040 3.8 1.5 -3.05 4.82 5.12 -2.46 0.59 3 BS17570–063 6240 4.8 0.5 -2.92 4.74 5.06 -2.52 0.40 4 CS22177–009 6260 4.5 1.2 -3.10 4.70 5.11 -2.47 0.63 5 CS22888–031 6150 5.0 0.5 -3.28 4.51 5.04 -2.54 0.74 6 CS22948–093 6360 4.3 1.2 -3.43 4.33 4.72 -2.86 0.57 7 CS22953–037 6360 4.3 1.4 -2.89 5.05 5.34 -2.24 0.65 8 CS22965–054 6090 3.8 1.4 -3.04 4.79 5.16 -2.42 0.62 9 CS22966–011 6200 4.8 1.1 -3.07 4.72 5.01 -2.57 0.50 10 CS29499–060 6320 4.0 1.5 -2.70 5.07 5.44 -2.14 0.56 11 CS29506–007 6270 4.0 1.7 -2.91 4.95 5.33 -2.25 0.66 12 CS29506–090 6300 4.3 1.4 -2.83 5.02 5.36 -2.22 0.61 13 CS29518–020 6240 4.5 1.7 -2.77 4.87 5.31 -2.27 0.50 14 CS29518–043 6430 4.3 1.3 -3.24 4.57 4.94 -2.64 0.60 15 CS29527–015 6240 4.0 1.6 -3.55 4.46 4.86 -2.72 0.83 16 CS30301–024 6330 4.0 1.6 -2.75 5.11 5.33 -2.25 0.50 17 CS30339–069 6240 4.0 1.3 -3.08 4.68 5.04 -2.54 0.54 18 CS31061–032 6410 4.3 1.4 -2.58 5.22 5.44 -2.14 0.44 *Anasteriskafterthenameofthestarmeansthatthestariscarbon-rich. independently with the LTE approximation (and without any correction).Thepotassiumabundancecanbecomputedonlyin giantstars,thelinesarenotvisibleintheturnoffstars. Andrievsky:RelativeabundancesoflightmetalsinEMPstars 5 X1.0 1.0 U L F E V TI0.9 0.9 A L E R 0.8 0.8 CS 22953-003 HD 122563 0.7 0.7 7698.5 7699.0 7699.5 7698.5 7699.0 7699.5 λ(A) λ(A) Fig.4.Potassium.Profilefittingfortwometal-poorgiants,both with[Fe/H]≈−2.8butwithdifferenteffectivetemperature.The best-fitKabundancewasvariedby0.05dex. 4. Discussion 4.1.Abundanceofmagnesiumandpotassiumintheearly Galaxy As recalled in Cayrel et al. (2004), Mg is formed during hy- drostatic carbonburningandexplosiveneonburning,K during explosiveoxygenburning;theirabundancesarethereforerelated totheimportanceofboththehydrostaticandexplosivephases. InFig.5wecomparetheLTEabundancesofmagnesiumin our sample of EMP dwarfs and giants (Bonifacio et al., 2009) Fig.6. [K/Fe]vs.[Fe/H]intheearlyGalaxy.Opencircles(red with the new NLTEdeterminations.The carbon-richandpecu- andblue)standfor”mixed”and”unmixed”giantsrespectively liarstarCS22949-037hasbeendiscarded. (seeSpiteetal.2005,2006a).Thepotassiumabundancecannot bemeasuredintheturnoffstars,thelinesaretooweak. Thetrendof the [Mg/Fe]ratio vs. metallicity atlow metal- licity is not changed, it remains a plateau. But the scatter of [Mg/Fe] is smaller when NLTE effects are taken into account: 0.13fromNLTEcomputationsand0.16fromLTEcomputation. The difference between dwarfs and giants is strongly reduced and is notsignificant anymore. The mean value of [Mg/Fe] in theinterval−4<[Fe/H]<−2.5isnow+0.61dex(itwas+0.34 fromLTE computations).Thisvalueof [Mg/Fe]isnowsimilar to the mean value of [O/Fe] previously deduced (Cayrel et al. 2004) from the forbidden oxygen line (not sensitive to NLTE effects). For the determination of the mean value of the ratios [Mg/Fe], their trend and their scatter around the trend, the carbon-richstarCS22949-037(showingalsostrongabundance anomalies of light elements) has been discarded. The star has been as well excludedfrom all computationsand/orfiguresre- latedtoMgabundances. When NLTE is taken into account, the values of the abun- danceratios[K/Fe]areslightlydecreased.Thescatterof[K/Fe] isalsoslightlysmaller.Themeanvalueof[K/Fe]intheinterval −4<[Fe/H]<−2.5isabout+0.33dex.Thisvalueisveryclose to the value found by Takeda et al. (2009). We have checked thatthesmalldifferencesbetweenthetwodeterminationsreflect the fact that we have determined the potassium abundance by Fig.5. [Mg/Fe]vs.[Fe/H]intheearlyGalaxy.Opencircles(red a direct fit of the profiles whereas Takeda et al. have used the andblue)standfor”mixed”and”unmixed”giants(seeSpiteet equivalentwidthsgiveninCayreletal.(2004). al.2005,2006a,2006b),blackfilledsymbolsforturnoffstars. Wehaveestimatedstarbystartheerroron[K/Fe]inoursam- ple of stars. This error is dominated by the measurementerror (equivalentwidthorprofile)anditincreasessignificantlywhen themetallicitydecreases:atlowmetallicitythepotassiumlines 6 Andrievsky:RelativeabundancesoflightmetalsinEMPstars becomesveryweak(lessthan10mÅandoftenlessthan5mÅ) inaregionwheretheS/Nratioisonlyabout100andwherethe positionofthecontinuumisnotveryprecisebecauseofresidual fringes.Inconsequence,asshowninourFig.6wedonotcon- firm the suggestionof Takeda et al. (2009) of ”a marginalsign ofdeclinetowardafurtherlower[Fe/H]”. It is interesting to note that the K-rich star CS 30325-94 (LTE,see Cayreletal. 2004) remainsK-rich(andwitha small error)intheNLTEanalysis(seeFig.6)anditisalsoSc-rich.In thestellarsampleofZhang&Zhao(2005),themostpotassium- rich star HD 195636 (with [Fe/H]=–3.3, and [K/Fe]=+1.35) is also very scandium-rich. The production of these elements is not unanimously ascribed to definite sites; there could be a link between the formation processes of these elements in Fig.7. Abundance of O, Na, Al, and K relative to Mg in the massive stars. However,the scandium-richstars are notalways early Galaxy. The abundances of all these elements have been potassium-rich(seeforexampleCS22885-096inoursample). computedtaking into accountthe NLTE effect. Since the mea- suredoxygenlinesareforbiddenlinestheyarefreefromNLTE effects. 4.2.AbundancesofOandlightmetalsrelativetoMginthe earlyGalaxy Oxygen: ThemagnesiumabundanceslistedinTable1canbeusedasa 4.3.Comparisontothepredictionsoftheejectaof normalizationfactorforotherelements.Itisinterestingtocom- supernovae pute the ratio [O/Mg] using this new NLTE value of the mag- nesium abundance : since the abundance of oxygen has been It is interesting to compare the abundance ratios [O/Mg], determinedfromtheforbiddenoxygenline,is freefromNLTE [Na/Mg], [Al/Mg] and [K/Mg] to the predictions of the ejecta effects.ThecorrespondingplotsareshowninFig.7. ofmetal-poorsupernovaeorhypernovae.InFig.8theobserved ratios are compared to the predictions of Woosley & Weaver Sodium: (1995),ofHeger&Woosley(2008,2002),ofChieffi&Limongi AsfoundinAndrievskyetal. (2007),the”mixed”starsare (2003), and Kobayashi et al. for supernovae and hypernovae oftenenrichedinsodium.Thisreflectsaninternalmixinginside (Kobayashietal.,2006). these giant stars. Thereforethe mixed stars should not be used to determine the ratio [Na/Mg] in the early Galaxy. Note that the star CS 22952-15(a mixedstar with [Fe/H]=–3.43)is very sodium-rich, but its ratio [Al/Fe] is normal (see Andrievsky et al., 2008). However its ratio [Al/Mg] is also rather high. The explanationisthatthismixedstarisNa-richandMg-poor. Meanvalueandscatter: SincetheabundancesofO,Na,AlandKrelativetoMgare ratherflatintheircentralpart,wecandefineameanvalueinthis centralinterval,say−3.6<[Fe/H]< −2.5.Themeanvaluesof theseflatpartsare: [O/Mg] ≈ 0.1, [Na/Mg] ≈ −0.8, [Al/Mg] ≈ −0.7 and [K/Mg]≈−0.3. For the same sample of stars in the same intervalof metal- licity(−3.6 < [Fe/H] < −2.5),thescatteraroundthemeancan alsobecomputed,thevaluesare: σ = 0.18 but σ = 0.20, σ = 0.12 but [O/Fe] [O/Mg] [Na/Fe] σ = 0.14,σ = 0.11,σ = 0.11,σ = 0.09 [Na/Mg] [Al/Fe] [Al/Mg] [K/Fe] butσ =0.15. [K/Mg] Fig.8. Comparisonof the new abundanceratiosto the predic- ThelargescatterfoundforO,isduetothereducednumber tionsofsupernovaeorhypernovae. ofmeasurements. The valuesof the scatter obtainedfor the NLTE abundance ratios are lower than for the LTE abundances. However, it ap- pearsthat,asalreadyobservedinLTE(Cayreletal.,2004),the The quantity of potassium ejected is generally underesti- scatter of the abundance ratios is larger when Mg is chosen as mated by the models of supernovae. The best agreement is thereferenceelementinsteadofFe.Alisanexception. obtained by the predictions of Heger & Woosley (2008) with Thisfactissurprising:itwouldhavebeenexpectedthatthe the hypotheses B and D (see the paper), although the abun- abundancesof Na and K producedby (mainlyhydrostatic)nu- dance of sodium and aluminum are in this case a little overes- clearprocesses(similartothoseproducingMg)wouldbearmore timated. The ratio Al/Mg is also well representedin the model resemblance to the Mg abundance than to the Fe abundance of Chieffi & Limongi (2003). Unfortunately there are no pre- (producedquitedifferently);thescatterof[Na/Mg]and[K/Mg] dictions for the abundance of O, Na and K in this model. The wouldthenbesmallerthanthescatterof[Na/Fe]and[K/Fe],but modelsofKobayashietal.(2006)(supernovaeandhypernovae theobservationsshowthecontrary. withZ=0.0)seemalsoabletorepresenttherelativeabundances Andrievsky:RelativeabundancesoflightmetalsinEMPstars 7 ofO,Na,MgandAl,buthereagaintheproductionofpotassium isstronglyunderestimated. 4.4.Variationof[O/Mg],[Na/Mg],[Al/Mg]and[K/Mg]inthe Galaxy InFig.9wepresentthevariationof[O/Mg],[Na/Mg],[Al/Mg] and[K/Mg]intheGalaxyasafunctionof[Mg/H]whereNa,Al, Mg and K have been computed taking into account the NLTE effects (the oxygenabundancededucedfromforbiddenlines is notaffectedbydeparturefromLTE). As already noted,[Mg/H]should be a better indexof time, since magnesiumis only formedin massive SN II with a short lifetime,unlikeironformedinSNIIorSNIofvariousmasses. WehaveaddedinthefigurethedeterminationsofGehrenet al. (2004, 2006), ofMashonkinaetal. (2008), andZhanget al. (2006) in the Galactic disk and halo. All these determinations havebeendoneincludingtheNLTEeffectsonthelineprofiles. As seen in Fig. 9, the abundance ratios [Na/Mg], [Al/Mg] and[K/Mg]intheGalaxydecreasewith[Mg/H]from[Mg/H]= 0 to [Mg/H]=–2, then are almost constant between [Mg/H]=– 2 and [Mg/H]=–2.8,and finally, at lower metallicity, the ratios [Na/Mg],[Al/Mg],and[K/Mg]andmaybealso[O/Mg]seemto increase when [Mg/H] decreases. (The error on [O/Mg] in the two mostmagnesium-poorstars islargeandthusthistendency isnotfirmlyestablishedforoxygen.) In Fig. 9 the evolutions of the abundance ratios [O/Mg], [Na/Mg], [Al/Mg] and [K/Mg] in the Galaxy are also drawn, followingKobayashietal.(2006),Franc¸oisetal.(2004)andfor NaandAl,Goswami&Prantzos(2000). Kobayashietal. use newnucleosynthesisyieldscalculated, from Z = 0 to Z = Z , for supernovae and hypernovae. With ⊙ these new yields, the general trend of O, Na and Al is rather wellreproduced,butnotthebehaviourofpotassium.Theunder- productionofpotassiuminthemodelsofsupernovaehasalreay been pointed out by Samland (1998). To solve this problem as well as the underproduction of Si and Sc, Umeda & Nomoto (2005)haveproposedtointroduceamodelofsupernovawhere thedensityisassumedtobereduced(duringtheexplosiveburn- ing)toincreasethefreezeout. The predictions of Franc¸ois et al. (2004) are based on the Fig.9. Variation of [O/Mg], [Na/Mg], [Al/Mg], [K/Mg] vs. yields of Woosley & Weaver (1995). For a better fit of the ob- [Mg/H] in the Galaxy. The red and blue open circles repre- servations they had to systematically increase the production sent our measurements for mixed and unmixed giants (see the of K by a factor of 8. In the computations of Kobayashi et al. electronic version of A&A for a color version of this figure), (2006)theratio[O/Mg]remainsstableatverylowmetalliciticty. the large black dots represent the turnoff stars of our sample Contrary to that, Fanc¸ois et al. (2004) predict an increase of and the small black dots are from Gehren et al. (2004, 2006), [O/Mg]whenthemetallicitydecreasesfor[Mg/H]<−2.5.The Mashonkinaetal. (2008), andZhanget al. (2006), forthe disk measurementof[O/Mg]inthetwomostmetal-poorstarsinthe andhalostars.ThethinsolidlineisthepredictionofFranc¸oiset Fig. 9 is unfortunately too uncertain (one is clearly an upper al.(2004)forOandKandofCescuttietal.(privatecommunica- limit)toenabletochooseoneofthetwomodels. tion)forNaandMg.Thedasheddottedlinesarethepredicitions For Na and Al we give the predictions of Goswami & ofGoswami&Prantzos(2000)forNaandAl.Thesepredictions Prantzos(2000),andofCescuttietal.(privatecommunication). arebased(withoccasionaladjustments)onthemodelsofsuper- Thesepredictionsare,asinFranc¸oisetal.(2004),basedonthe novaeejectaofWoosley&Weaver(1995).Thethicksolidlines yieldsofWoosley&Weaver (1995) buttheyieldsoflowmass arethepredictionsofKobayashietal.(2006)based(withoutad- andintermediatemassstarshavebeenadjusted.LikeKobayashi justments)onnewmodelsofsupernovaeandhypernovae. et al. (2006), they predict a decrease of [Na/Mg] and [Al/Mg] when[Mg/H]decreases,buttheagreementwiththeobservations isbetterwhenthemodelofKobayashietal.isadopted. AbundancesofMgandK: 5. Conclusion The NLTE correction for magnesium is in accord with the ThespectraoftheEMPstars,(programmeFirstStars)analysed correctioncomputedbyGehrenandcollaborators(2004,2006) previously(Cayreletal.2004)inLTEhavebeenreanalysedhere inlessmetal-poorstars.TheMgabundanceinthegiantsisraised forMgandK,takingintoaccountthedeparturesofLTE. by a factor of about 2 and the NLTE abundance of Mg is the 8 Andrievsky:RelativeabundancesoflightmetalsinEMPstars sameingiantsandindwarfs.TheO/Mgratioisnearlysolar(the Bonifacio,P.,SpiteM.,CayrelR.,HillV.,etal.2009acceptedtoA&A(arXiv precisionoftheOabundanceishoweverratherlow). 0903.4174). The NLTE abundance of potassium, computed by adjuste- BrulsJ.H.,RuttenR.J.,ShchukinaN.1992,A&A265,237 CarlssonM.1986,UppsalaObs.Rep.33 mentofobservedandcomputedprofiles,hasbeencomparedto CayrelR.,DepagneE.,SpiteM.,HillV.,SpiteF.,Franc¸oisP.,PlezB.,Beers the work of Takeda et al. (2009). The agreement is generally T.C.,PrimasF.,AndersenJ.,BarbuyB.,BonifacioP.,MolaroP.,Nordstro¨m verygood.When differencesdo occur,theyarise fromthe fact B.2004,A&A416,1117(“FirstStarsV”) thatTakedaetal.usedtheequivalentwidthsgiveninCayreletal. ChieffiA.,LimongiM.2003intheESOastrophysicssymposia:FromTwilight to Highlight: The physics of Supernovae, ed. W. Hillebrandt & B. (2004)whilewefittedthecomputedprofilesdirectlytotheob- Leibundgut,p.367 servedspectra.(Therearesometimesslightdifferencesinthepo- ChenY.Q.,NissenP.E.,ZhaoG.,ZhangH.W.,BenoniT.2000,A&AS141,491 sitionofthecontinuum.)TheNLTEcorrectionforthepotassium DekkerH.,D’OdoricoS.,KauferA.,etal.2000inOpticalandIRTelescopes lines is smaller in the more metal-poorstars, (as already noted InstrumentationandDetectors,edsI.Masanori&A.F.MorwoodProc.SPIE by Takeda et al., 2009). In Cayrel et al. (2004), the potassium 4008,534 DrawinH.-W.1961,ZPhy164,513 abundance had been roughly corrected for NLTE (by applying DrawinH.-W.1968,ZPhy211,404 uniformlyacorrectionof–0.35dex):thepotassiumabundances Franc¸oisP,MatteucciF.,CayrelR.,SpiteM.,SpiteF.,ChiappiniC.2004,A&A inthispaperhavethereforebeenunderestimated(especiallyfor 421,613 thosestarsthatarestronglymetal-poor). GehrenT.,LiangY.C.,ShiJ.R.etal.2004,A&A413,1045 GehrenT.,ShiJ.R.,ZhangH.W.etal.2006,A&A451,1065 Scatters: GoswamiA.,PrantzosN.2000,A&A359,191 Thescattersof[Mg/Fe]and[K/Fe]arefoundsmallerinthe GrattonR.G.,SnedenC.1987,A&A178,179 presentwork,wheredeparturesfromLTEaretakenintoaccount. Grevesse N., Sauval A. J., 2000, in Origin of Elements in the Solar TheNLTEabundancetrendsarethereforebetterdefinedthanthe System, Implications of Post-1957 Observations, Proceedings of the previousLTEtrends. InternationalSymposium.,EditedbyO.Manuel,Boston/Dordrecht:Kluwer Academic/PlenumPublishers,p.261 The[Mg/H]shouldbeabetterreferenceelementthanFe,but GustafssonB.,EdvardssonB.,ErikssonK.,JørgensenU.G.,NordlundA.,Plez evenwhiththenewNLTEdeterminations,thescatterof[O/Mg], B.2008,A&A486,951 [Na/Mg]and[K/Mg]remains(slightly)largerthanthescatterof HegerA.,WoosleyS.E.2002,ApJ567,532 [O/Fe], [Na/Fe] and [K/Fe]. This fact is surprising, iron being HegerA.,WoosleyS.E.2008,arXiv0803.3161(submittedtoApJ) formed in processes quite different from those (mainly hydro- HofsaessD.1979,ADNDT24,285 IvanovaD.V.,ShymanskyV.V.2000,ARep44,376 static)supposedtobeformingO,Mg,NaandK.Anexception Kobayashi C.,Tsujimoto T.,NomotoK.,Hachisu I.,andKatoM. 1998,ApJ isAl:thescatteristhesamefor[Al/Mg]and[Al/Fe]. 503,L155 Trends: KobayashiC.,UmedaH.,NomotoK.,TominagaN.,andOhkuboT.2006,ApJ The shapes of the new trends (versus both Fe or Mg) are 653,1145 KorotinS.A.,AndrievskyS.M.,LuckR.E.1999,A&A351,168 slightlydifferentfromtheLTEtrendsfoundpreviously(Cayrel KuruczR.L.1992,TheStellarPopulationofGalaxies,ed.B.Barbuy,A.Renzini, et al., 2004). For example, the slope of the [K/Fe] ratio ver- IAUSymp.149,225 sus [Fe/H], which was slightly positive, becomes slightly neg- Kurucz,R.1993,ATLAS9StellaratmospherProgramsand2km/sgridCD-ROM ative(Fig.6).Also,theNLTE valuesof[Na/Mg],[Al/Mg]and No.13Cambridge,Mass.:SAO,1993,13 [K/Mg]showatlowmetallicity(for[Mg/H]<−2.5)anincrease Kurucz R.L. 1996, Model Atmospheres and Spectrum Synthesis, ed. S.J. Adelman,F.Kupka,W.W.Weiss,SanFrancisco,ASPConf.Ser.108,2 when[Mg/H]decreases. KuruczR.L.,FurenlidI.,BraultJ.,TestermanL.,1984,SolarFluxAtlasfrom Comparisonwithmodels: 296to1300nm,NewMexico,NationalSolarObservatory There is some agreement with the models of galactic evo- Lodders,K.2003,ApJ,591,1220 lution. The trends of [O/Mg], [Na/Mg], [Al/Mg] with [Mg/H] MartinW.C.,Zalubas,R.1980,J.Phys.Chem.Ref.Data,9,1 MashonkinaL.,ZhaoG.,GehrenT.,AokiW.,BergemannM.,NoguchiK.,Shi in the Galaxy are rather well represented by the model of J.R.,Takada-HidaiM.,ZhangH.W.2008,A&A478,529 Kobayashi et al. (2006). However their model underestimates MatteucciF.2008,ArXiv0804.1492v1 theproductionofpotassium. MilesB.M.,WiseW.L.1969,ADNDT1,1 Finally the precision currently reached in the measurement MisheninaT.V.,SoubiranC.,KovtyukhV.V.,KorotinS.A.2004,A&A418,551 MortonD.C.1991Ap.J.Suppl.77,119 of high resolution high signal to noise spectra, obviously de- Nomoto K., Hashimoto M., Tsujimoto T., Thielemann F.-K., Kishimoto N., servescarefulanalyses,usingaccurateatomicparameters,NLTE KuboY.,NakasatoN.1997,Nucl.Phys.A,616,79 computations,andeven,inanearfuture,3Dstellaratmosphere PeartB.,UnderwoodJ.R.A.,DolderK.1989,JPhB22,1679 models. Piskunov N.E.,Kupka F.,Ryabchikova T.A.,Weiss W.W.,Jeffery C.S. 1995, A&AS112,525-535 Acknowledgements. SMAkindlyacknowledges thesupportandhospitality of Rahman-Attia,M.,Jaouen,M.,Laplanche,G.,Rachman,A.1986J.Phys.B19, the Paris-Meudon Observatory. P.B.acknowledges financial support from EU 897 contractMEXT-CT-2004-014265(CIFIST).M.S.,R.C.,F.S.,P.B.,V.H.,P.F. RuttenR.J.1978,SoPh56,237 acknowledgethesupportofCNRS(PNGandPNPS). SamlandM.1998,ApJ496,155 ShigeyamaT.,TsujimotoT.1998,ApJ507,L135 ShimanskayaN.N.,MashonkinaL.I.,SakhibullinN.A.2000,ARep,44,530 SchoeningT.,ButlerK.1998,A&AS128,581 References SeatonM.J.1962,Proc.Phys.Soc.79,1105 AllenC.W.1973,AstrophysicalQuantities(London:AthlonePress) Sobelman I.I., Vainshtein L.A., Yukov E. 1981, Excitation of Atoms and AndrievskyS.M.,SpiteM.,KorotinS.A.,SpiteF.,BonifacioP.,CayrelR.,Hill Broadening of Spectral Lines, Springer Ser. in Chem. Phys., Berlin, V.,Franc¸oisP.2007,A&A464,1081 Springer AndrievskyS.M.,SpiteM.,KorotinS.A.,SpiteF.,BonifacioP.,CayrelR.,Hill SpiteM.,CayrelR.,PlezB.,etal.2005,A&A430,655(“FirstStarsVI”) V.,Franc¸oisP.2008,A&A481,481 SpiteM.,CayrelR.,HillV.,etal.2006,A&A455,291(“FirstStarsIX”) AymarM.,Luc-KoenigE.,CombetFarnouxF.1976,JPhB9,1279 SpiteM.,CayrelR.,SpiteF.,etal.2006,in:Chemicalabundancesandmixing BallesterP.,ModiglianiA.,BoitiquinO.,CristianiS.,HanuschikR.etal.2000, instarsintheMilkyWayanditssatellites, Proc.ESO-ArcetriWorkshop, ESOMessenger101,31 eds.S.Randich&L.Pasquini,p.200,Springer BiemontE.,GrevesseN.1973,ADNDT12,217 SteenbockW.,HolwegerH.1984,A&A130,319 BiemontE.,BraultJ.W.1986,Phys.Scr.,34,751 SugarJ.,CorlissC.H.1985,J.PhChRD,14-2 Bonifacio,P.,Molaro,P.,Sivarani,T.,etal.2007,A&A,462,851(“FirstStars TakedaY.,KanekoH.,MatsumotoN.,OshinoS.,ItoH.,ShibuyaT.2009,in VII”) pressatPASJ(arXiv0902.4504) Andrievsky:RelativeabundancesoflightmetalsinEMPstars 9 TakedaY.,ZhaoG.,ChenY.Q.,QiuH.M.,Takada-HidaiM.2002,PASJ54,275 TimmesF.X.,WoosleyS.E.,WeaverT.A.1995,ApJS98,617 TruranJ.W.,ArnettW.D.1970,ApJ160,181 UmedaH.,NomotoK.2005,ApJ619,427 vanRegemorterH.1962,ApJ136,906 WarnerB.1968,MNRAS139,115 WiseW.L.,MartinG.A.,NSRDS-NBS68,P.II WieseW.L.,SmithM.W.,MilesB.M.1969,NSRDS-NBS22!!! WoosleyS.E.,WeaverT.A.1995,ApJS,101,181 ZhangH.W.,GehrenT.,ButlerK.,ShiJ.R.,ZhaoG.2006,A&A457,645 ZhangH.W.,ZhaoG.2005,MNRAS364,712

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.