Acknowledgements First I would liketo thank my supervisors, Damian Markham and Ge¬rard Cohen, for providingsupport onthisproject. Averyspecial thankstoDamian Markham,whonot onlyshowedmetheEnglish(i.e. relaxed,informal,cordial,lazy,etc.) waytodoresearch, but also becomelikea friend and mentor to me. When I started thisthesis, I wasa hard corecomputer scientist and Damian wasahard corephysicist. I think wemutually adapted in these3 years, and now I can proudly call myself afakephysicist. I know sometimesI’m lazyandannoying,thanksfor not kickingmyass! Lifeinthequantum groupis, for thelack of abetter word,nonchalant. SoI would liketothank everyoneinour group,Eleni Diamanti,RomainAlle¬aume,IsabelleZaquine, Tom Lawson, MarcKaplan, Rupesh Kumar, AnneMarin, AnnaPappa, Hao Qin, Adel Sohbi, Paul Jouguet and Se¬bastien Kunz-Jacquesfor all the memorable momentsof grouplifefrom thequantum lunchestotheChristmasdinners. StimulatingdiscussionswithPabloArrighiandElhamKashefiareoftenverybeneficial. I wouldalsoliketogivePabloArrighi aspecial thanksfor beingthefirst persontoentrust mewith aresearch problem. I would also like to thank Samson Abramsky, GillesDowek, Dan Browne, Gilles Ze¬mor andTerryRudolph for agreeingtobepart of my jury. I alsowant tothank Terry for a wonderful summer at Imperial. From thesethreemonthsI learned invaluable lessonsfrom him on how tobeagood scientist. Aspecial thankstoFengYan and PingYan,for thecountlessafternoon chatsabout academia,thepast and thefutureandthecountlessdinnerstogether. Also, I wish togivemymost sincerethankstomyparents. Aspart of thegeneration who lived through the cultural revolution, they valueeducation aboveall else. If it weren’t for their dedicationandhard work I would not havehadthechancetocometo Franceand becomearesearcher. Lastly, I wish tothank mybetter half, Wei,for her continued support and encourage- ment. Wehavebeenthroughthetoughest timeof our livestogether,and thefuturecan onlybebrighter for usand our family! ii Abstract Thisthesisisabout thenonlocal propertiesof permutation symmetricstatesandthepo- tential usefulnessof such propertiesinquantum information processing. Thenonlocality of almost all symmetricstates,except Dickestates,isshown byconstructingan n-party Hardyparadox. With thehelp of theMajoranarepresentation, suitablemeasurement settingscanbechosenfor thesesymmetricstateswhichsatisfytheparadox. Anextended CH inequality can bederived from the probabilistic conditionsof theparadox. This inequality isshown to beviolated by all symmetricstates. Thenonlocality properties and entanglement properties of symmetric states are also discussed and compared, notablywithrespect topersistencyand monogamy. It isshown that thedegeneracy of somesymmetricstatesislinked tothepersistency,which providesawaytousedevice independent teststoseparatenonlocality classes. It isalsoshown that theinequalities usedtoshow thenonlocalityof all symmetricstatesarenot strictlymonogamous. Anew inequalityfor Dickestatesisshown tobemonogamouswhen thenumber of partiesgoes toinfinity. But all theseinequalitiescan not detect genuinenonlocality. Applicationsof nonlocalitytocommunicationcomplexityandBayesian gametheoryarealsodiscussed. iii iv Re¬sume¬ Lesujet decettethe¡seest sur lesproprie¬te¬snon-localesdese¬tatssyme¬triquesinvariant souslespermutationsdessyste¡meset lesusagespotentielsdecese¬tatsdansledomaine detraitement d’information quantique.Lanon-localite¬depresquetouslese¬tatssyme¬- triques, horslese¬tatsdeDicke, est e¬tabliepar une version e¬tenduedu paradoxe de Hardy.Gracea¡ larepre¬sentationdeMajoranapour lese¬tatssyme¬triques,desparame¡tres demesureaveclesquelstouteslesconditionsdu paradoxesont satisfaitespeuvent e√tre trouve¬s.Uneversione¬tenduedel’ine¬galite¬deCHpeute√trede¬rive¬ea¡ partirdesconditions probabilistesdeceparadoxe. Cetteine¬galite¬est viole¬epar touslese¬tatssyme¬triques. Lesproprie¬te¬sdelanon-localite¬et lesproprie¬te¬sdel’intrication sont aussi discute¬es et compare¬es,notamment par rapport a¡ lapersistanceet lamonogamie. Desre¬sultats indiquent quelade¬ge¬ne¬rescencedecertainse¬tatssyme¬triquesest lie¬ea¡ lapersistance, qui donneunefacÀon d’inventer destestsqui sont inde¬pendantsdesdispositifsvise¬pour se¬parer lesdiffe¬rentesclassesdenon-localite¬.Il est aussi montre¬quel’ine¬galite¬utilise¬e pour de¬montrer lanon-localite¬destouslese¬tatssyme¬triquesn’est pasmonogamedans lesensstrict. Ne¬anmoins, unenouvelleine¬galite¬pour lese¬tatsdeDickeest propose¬e, qui est monogamequand lenombredeparticipantstendsversl’infinite¬.Malheureuse- ment,toutescesine¬galite¬ssont incapablesdede¬tecter lanon-localite¬authentique.Des applicationsdelanon-localite¬a¡ lacomplexite¬decommunication et auxjeuxbaye¬siens sont discute¬es. v vi Contents Acknowledgements i Abstract iii Re´sume´ v Publications xii 0 Sommairedelathe¡se 1 0.1 Re¬sume¬deschapitres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0.2 Lanon-localite¬dese¬tatssyme¬triques . . . . . . . . . . . . . . . . . . . . . . 5 0.3 Lanon-localite¬et lesclassesd’intrication. . . . . . . . . . . . . . . . . . . . 19 0.4 Uneine¬galite¬monogamepour lese¬tatsdeDicke . . . . . . . . . . . . . . . 23 1 Introduction 27 2 Background 30 2.1 Essential Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2 Postulatesof Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3 ScratchingtheSurfaceof QuantumEntanglement . . . . . . . . . . . . . . 40 2.4 TheFacetsof Nonlocality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.4.1 ALittleBit of History . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.4.2 Bell’sInequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.4.3 Nonlocalityfrom Correlations . . . . . . . . . . . . . . . . . . . . . . 48 2.4.4 Probability-freeNonlocality& Mermin Inequality . . . . . . . . . . 51 2.4.5 Almost Probability-freeNonlocality& HardyParadox . . . . . . . 55 2.4.6 Unification of Different ApproachestoNonlocality . . . . . . . . . 57 2.5 SemidefiniteProgramming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 vii Contents 3 TheMajoranaRepresentation of SymmetricStates 62 3.1 Geometryof ComplexNumbers . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.1.1 TheComplex Planeand theRiemann Sphere . . . . . . . . . . . . 63 3.1.2 TheMo(cid:2)biusTransformation . . . . . . . . . . . . . . . . . . . . . . . 65 3.2 From Complex GeometrytotheMajoranaRepresentation . . . . . . . . . 72 3.3 Physical Interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.4 TheMajoranaRepresentation and Entanglement . . . . . . . . . . . . . . . 79 4 Nonlocality of SymmetricStates 83 4.1 BipartiteHardyParadoxRevisited . . . . . . . . . . . . . . . . . . . . . . . . 83 4.2 MultipartiteHardyParadox andtheInequalityPn . . . . . . . . . . . . . . 88 4.3 Violation of Pn ByAlmost All SymmetricStates . . . . . . . . . . . . . . . 91 4.4 Violation of Pn ByAll SymmetricStates . . . . . . . . . . . . . . . . . . . . 96 5 Degeneracy and itsConsequences 101 5.1 Degeneracyand Persistencyof Nonlocality. . . . . . . . . . . . . . . . . . . 102 5.2 DeviceIndependent Classification of States . . . . . . . . . . . . . . . . . . 104 6 Analysisof Nonlocal Propertiesfor SymmetricStates 109 6.1 LargenResultsfor jW i and jGHZ i . . . . . . . . . . . . . . . . . . . . . . 109 n n 6.2 Monogamyof Entanglement andMonogamyof Correlations . . . . . . . 112 6.3 Monogamyand GenuineNonlocalityof DickeStates . . . . . . . . . . . . 116 7 Applications 120 7.1 Application toCommunication Complexity . . . . . . . . . . . . . . . . . . 120 7.2 Application toBayesian Games. . . . . . . . . . . . . . . . . . . . . . . . . . 124 8 Summary 127 8.1 New Resultsin ThisThesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 8.2 Recent Progresson Related Topics . . . . . . . . . . . . . . . . . . . . . . . . 128 8.3 Outlooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Bibliography 129 viii List of Figures 1 L’e¬tat te¬trae¡dre(a) et l’e¬tat j000+i (b) danslarepre¬sentationdeMajorana. 20 2 L’e¬tat te¬trae¡dre(a) et l’e¬tat GHZa¡ 4qubitsjGHZ i (b) danslarepre¬sen- 4 tation deMajorana. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 Comparaison delaviolation deL (75) par jS(n,n)i (n) et jW i (l ) en 2 n fonction den(lenombredeparties). . . . . . . . . . . . . . . . . . . . . . . 24 3.1 Thecomplexplanewith thenumber a+ bi. . . . . . . . . . . . . . . . . . . 63 3.2 Thestereographicprojection of thecomplexplanetotheunit sphere. . . 64 3.3 TheRiemann spherewithspherical coorinates(cid:2)and (cid:2). . . . . . . . . . . 65 3.4 Onthecomplexplane,apoint Pinsidetheunit circle(blue) getsinverted to P0outsidetheunit circle(red). . . . . . . . . . . . . . . . . . . . . . . . . 68 3.5 Effectsof complexinversionson generalizedcircles.. . . . . . . . . . . . . 70 3.6 TheBloch sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 ∆ ∆ 3.7 TheTetrahedron. jTi = 1jS(4,0)i + 2jS(4,3)i. . . . . . . . . . . . . 80 3 3 3.8 TheOctahedron. jOi = p1 (jS(6,1)i + jS(6,5)i). . . . . . . . . . . . . . . . 81 2 p p p 3.9 TheCube. jCi = p1 ( 5jS(8,0)i + 14jS(8,4)i + 5jS(8,8)i). . . . . 81 2 6 p p p 3.10 TheIcosahedron. jIi = 1( 7jS(12,1)i (cid:2) 11jS(12,6)i (cid:2) 7jS(12,11)i). 81 5 p p 3.11 The Dodecahedron. jDi = 1p ( 187jS(20,0)i + 627jS(20,5)i + p p 25 3 p 247jS(20,10)i (cid:2) 627jS(20,15)i + 187jS(20,20)i). . . . . . . . . . 82 4.1 ThethreesymmetricBell statesin theMajoranarepresentation. . . . . . 87 5.1 The tetrahedron state (a) and the state j000+i (b) in the Majorana representation.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.2 Thetetrahedron state(a) and the4-qubit GHZstate(b) in theMajorana representation.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 ix
Description: