Astronomy&Astrophysicsmanuscriptno.paper˙maser˙pepe (cid:13)c ESO2013 December11,2013 Non–local radiative transfer in strongly inverted masers. F.Daniel1 andJ.Cernicharo1 LaboratoryofMolecularAstrophysics,DepartmentofAstrophysics,CentrodeAstrobiolog´ıa(CSIC-INTA).Crta.Torrejo´naAjalvir km4.28840Torrejo´ndeArdoz.Madrid.Spain e-mail:[email protected] ABSTRACT 3 Context.Masertransitionsarecommonlyobservedinmediaexhibitingalargerangeofdensitiesandtemperatures.Theycanbeused 1 toobtaininformationonthedynamicsandphysicalconditionsoftheobservedregions.Inordertoobtainreliableconstraintsonthe 0 physicalconditionsprevailinginthemasingregions,itisnecessarytomodeltheexcitationmechanismsoftheenergylevelsofthe 2 observedmolecules. Aims.We present a numerical method that enables us to obtain self–consistent solutions for both the statistical equilibrium and n radiativetransferequations. a Methods.Using the standard maser theory, the method of Short Characteristics isextended to obtain the solution of the integro– J differentialradiativetransferequation,appropriatetothecaseofintensemasinglines. 2 Results.WehaveappliedourmethodtothemaserlinesoftheH Omoleculeandwecomparewiththeresultsobtainedwithaless 2 accurateapproach.Intheregimeoflargemaseropacitieswefindlargedifferencesintheintensityofthemaserlinesthatcouldbeas ] highasseveralordersofmagnitude.Thecomparisonbetweenthetwomethodsshows,however,thattheeffectonthethermallines A ismodest.Finally,theeffectintroducedbyratecoefficientsonthepredictionofH Omasinglinesandopacitiesisdiscussed,making 2 G useofvarioussetsofratecoefficientsinvolvingHe,o–H andp–H .Wefindthatthemasingnatureofalineisnotaffectedbythe 2 2 . selectedcollisionalrates.However,fromonesettotheotherthemodelledlineopacitiesandintensitiescanvarybyuptoafactor∼2 h and∼10respectively. p - o r t 1. Introduction radiatedbyamasingline.AsoutlinedbyCollison&Nedoluha s a (1995), masertheoreticalstudiesadopttwo differentstrategies: The first maser signal was detected in 1965 (Weaveretal., [ i)theysolveexactlytheradiativetransferinthemaserbutwith 1965). It was due to OH and the intriguing nature of this de- a simplified description of the energy levels of the molecule; 1 tection was rapidly attributed to a non–thermal phenomenon ii) or deal with an exact description of the molecule but using v (Daviesetal., 1967) which originates in the amplification of approximationsin the radiative transfer treatment. In the latter 3 the radiation due to stimulated emission. Since then, many 5 case, the escape probability formalism is widely used, despite improvements have been made both in observational facili- 2 thefactthatthevalidityofthisapproximationisquestionablein ties and maser theory, leading to an abundant literature on 0 thecaseofmasinglines.Indeed,intensemasersrequirealarge the subject. The main results, both theoretical and observa- . amplificationpathand,therefore,coherenceinvelocityoverrel- 1 tional, have been summarised by, e.g., Elitzur (1992) or Gray atively large scales. In contrast, the basic principle of the LVG 0 (1999). From the observational point of view, major improve- 3 approximationis that the different regionsof the cloud are de- ments have been obtained in the last 20 years thanks to the 1 coupled due to Doppler shifting, hence limiting the coherence rise of sensitive interferometersand VLBI techniques (see e.g. : path.Inthisworkwepresentaself–consistentmethodthataims v Humphreys,2007;Fish,2007,andreferencestherein).Thesizes to go beyondthe approximationsusually made, i.e. we present i of the regions where maser emission is detected have typi- X a method that enables us to solve exactly the radiative transfer cal scales of a few AU. Nevertheless, some masers arise from problemandinwhichwedealwitharigorousdescriptionofthe r a largespatialscales,suchasthe183.3GHzlineofwatervapour molecule. (Cernicharoetal., 1990, 1994). From the point of view of the theory,despitethefactthatmanyimprovementshavebeenmade in explaining the pumping mechanisms of molecular masers, there are no definitive explanations that could account for all the observations as yet. As an example, the problem of water Thetheoryrelevanttothedescriptionofmasinglinesaswell megamasers observed in the direction of AGN is still a sub- asthewaytheradiativetransferissolvedisdescribedinSection ject of debate (Elitzuretal., 1989; Deguchi&Watson, 1989; 2.Anapplicationfortheo–H OmoleculeispresentedinSection 2 Kylafis&Pavlakis,1999;Cernicharoetal.,2006a). 3wherethemethoddevelopedinthisstudyiscomparedtoother Thebasicsofthestandardmasertheorywhichiswidelyused lessaccurateapproaches.Finally,thecurrentmethodisusedin inordertointerpretmasinglineshavebeenreviewedbyElitzur Section 4 in order to predict which lines of o–H O or p–H O 2 2 (1992).Themainaspectofthistheoryistointroducetheeffectof couldbeinvertedfordensitiesandtemperaturestypicalofAGB saturationwhichputslimitsontheamountofenergythatcanbe circumstellarenvelopes.Inthissection,thepredictionsbasedon varioussetsofcollisionalratecoefficientsinvolvingHe,p–H or 2 Sendoffprintrequeststo:F.Daniel o–H2arealsocompared. 1 F.DanielandJ.Cernicharo:Non–localradiativetransferinstronglyinvertedmasers. 2. Theory the absorption and emission line profiles are identical and are givenbytheDopplerlineprofileφ(ν),weobtainfromeq.1: 2.1.Absorptioncoefficient 0 = Λ (v)φ(v)−n (v)[Γ (v)+C +C ] In the case of intense masers, the radiation field starts to influ- u u u ul uu + φ(v)[N C +N C ]−n (v)A −∆n(v)R (v) (3) ence the inversion of the population, avoiding a complete fre- l lu u uu u ul lu quency redistribution, leading to differing line profiles for ab- 0 = Λ(v)φ(v)−n(v)[Γ(v)+C +C ] l l l lu ll sorption and emission. This occurs when the intensity in the + φ(v)[N C +N C ]+n (v)A +∆n(v)R (v) (4) u ul l ll u ul lu masing lines exceedsa certain thresholdwhich dependson the given physical conditions. In this case, the maser is said to be wherethepumpandlossrates,notedΛi andΓi (withi ∈ {u,l}), saturated.The way this effectis introducedin the theoryis de- aredefinedby scribedlaterinthissection. Moreover,underaparticulargeometrytheamplificationpath Λi(v) = Nj Cji+Rji(v) (5) varies with direction,implying that the distribution of molecu- jX,{u,l} h i lar velocities should in principle be considered as anisotropic. Γ(v) = C +R (v) (6) i ij ij ThisproblemwasfirstidentifiedbyBettwieser&Kegel(1974). jX,{u,l}h i In the case of spherical geometry, a common approxima- tion, known as ”standard theory”, consists of neglecting the Thisleadstotheusualexpression: anisotropy of the molecular velocities resulting from the exis- tenceofdirectionsofdifferentpathlengths.Thevalidityofthis ∆n(v)= gl n (v)−n(v)=n (v) 1+ Rlu(v) −1 φ(v) (7) assumption was tested in various studies (see e.g. Bettwieser, g u l 0 " J¯(v) # u 1976;Neufeld,1992;Emmering&Watson,1994;Elitzur,1994) with forsphericalgeometry.Theyconcludedthatconsideringexplic- itly the anisotropies of the absorption coefficient could lead to 1 variationsin the propertiesof the emergingmaser radiation, in n (v) = A(v)[Λ (v)+N C +N C ] 0 1+B(v)guA u l lu u uu tthheesceavsearoiaftisoantusrraetemdaimnausenrism.pHoorwtaenvteirn, ictowmapsarpiosoinntetdoothuet tuhna-t gl ul certaintiesthataffectmasertheory,andthatthestandardtheory − B(v)[Λ(v)+N C +N C ] (8) l u ul l ll stohhreyoulialndrg,tehatenluetrmaesabtt,embreeonfatsrioemafsptolhinefiacbraaltydioiganotsiovadedfitorrpastntesadfpebpryr(otRxhTiem)s,atawtinoednaa.rsGdsuitvhmeene- J¯(v) = 1+B(v)ggulAul (9) A(v)+B(v) inthefollowingthatthemasinglineabsorptioncoefficientsare isotropic,andwefollowaproceduresimilartothatdescribedby and Anderson&Watson (1993). First, we consider the frequency– g dependent statistical equilibrium equations (SEE) for the level A(v) = l [Γ (v)+C +C +A ]−1 (10) u ul uu ul g i: u g −1 dndi(tv) = Njφ(v)Cji−ni(v)Cij + Niφ(v)−ni(v) Cii B(v) = "Γl(v)+Clu+Cll− gulAul# (11) Xj,i h i (cid:2) (cid:3) Thesourcefunctionofthemasinglineisgivenby: + n (v)R (v)−n(v)R (v) (1) j ji i ij Xj,i h i S (ν)=−2hν3 gl nu(ν) (12) ul c2 g ∆n(ν) u with where n (ν) can be obtainedfrom eqs 3 and 7. Contraryto the B u A + ij I (Ω)dΩ if E > E caseofthermallines,thesourcefunctionisfrequencydependent R (v)= ij 4π Z v i j (2) forthemaserline. ij B4πij Z Iv(Ω)dΩ if Ei < Ej efficIinenotrsdferrotmoothbetasienetxhperseosusriocensf,uwncetisoenestahnadttthheeraeblseovrapnttioqnucaon-- Intheseequations,N representsthetotalpopulationoflevel titiesarethespecificlineintensities(averagedovertheangles), j and the total level populations, N . The latter are obtained by j,n (v)isthepopulationoflevel jatthevelocityv.Thequantity j j solvingthefrequencyindependentSEEexpressedby: φ(ν)correspondstotheusualDopplerlineprofilethataccounts forboththethermalandturbulentmotionofthemolecules. Aij 0 = NjCji−NiCij + NjJ¯ji−NiJ¯ij (13) andB aretheEinsteincoefficientsforspontaneousandinduced ij Xj,i h i Xj,i h i emission,E istheenergyoflevel j,C arethecollisionalrates j ji from level j to level i and I (Ω) is the specific intensity in a with v direction specified by Ω. We note that in equation 1 the elas- tic collisional ratesCii have to be formallyincluded since they J¯kl =Z φk(ν)Rkl(ν)dν (14) contribute to the relaxation of velocities (Anderson&Watson, 1993).Equation1canbere-writtensothatalllevelsexceptthose In the latter expression, the velocity profile φ (ν) = n (ν)/N k k k involvingthemasertransitionareincludedinthesocalledpump accounts for the departure from the Doppler line profile if the andlossrates.Thisleadstoaphenomenologicaltreatmentwhere line k → l is a masing transition, for consistency with eq. 1. thefullSEEisartificiallyreducedtoatwo levelsystem.Inthe In the case of thermal lines, these profiles are simply given by following,thelabelsuandlindicatetheupperandlowermaser theDopplerprofileandareidenticalforbothlevels.Inthislat- levels, respectively. Assuming that for all the other transitions ter case, the average of the specific intensities over angles and 2 F.DanielandJ.Cernicharo:Non–localradiativetransferinstronglyinvertedmasers. velocities in eq. 13 can be factorized, which is crucial in es- in the case of thermal lines, the problem consists in solving a tablishingthepreconditionedformoftheSEE, asdiscussedby differentialequation.Notethattheintegralpartofthisintegro– Rybicki&Hummer(1991).Inthecase ofmasinglinesandfor differential equation involves an integration of the intensities consistencywitheq.1,wehaveintroducedunequalvelocitypro- over4πsteradians.Inordertoobtainintensitieswhicharefully filesforthemaserlevels;consequentlythefactorisationleading self-consistent with the level populationsused at a given itera- tothepreconditionedSEEisnolongerfeasible.Hence,theusual tion,wethusproceedinthreesteps. ALImethodcannotbeapplied. Inmoststudiestreatingtheradiativetransferinthepresence 2.2.1. Firstiterativescheme ofmasers,thepumpingratesaretakentobeindependentofthe velocity.Inthiscasetheexpressionforthepopulationdifference As a first step, we derive specific intensities at each grid point is similar to eq. 7 except that the velocity dependenceof n0(ν) according to eq. 15 assuming that the source functions are in- and J¯(ν) is omitted. Hence, the absorption coefficient will just dependentof the radiation field. In other words, we use eq. 12 depend on velocity through the term Rlu(ν). In the case of un- in order to expressthe source function assuming that the aver- saturated masers, this term is always negligible in comparison age radiation field is R+(ν). For each frequency,we obtain the to J¯(ν) and the absorption coefficient is given by the Doppler solutioniterativelybyclualculating I (θ) forθ ∈ [0 : π]andthen v lineprofile.However,forasaturatedmaser,i.e.,foralinewith updatingκ (v)atgridpointi.Weiterateuntilthecalculatedspe- lu Rlu(ν)∼ J¯,theabsorptioncoefficientdecreasesatthelinecentre. cificintensitiesareconsistentwiththeinitialaveragedradiation Thistranslatestothefactthat,foragivenpumpingscheme,the field. moleculespumpedtotheupperlevelarereadilydepletedtothe Inthefollowingdiscussion,R (ν)isindexedbyior f when- lu lowerbystimulatedemissionsince thenumberofmasingpho- ever it correspondsto the radiation field used in the evaluation tons is large. At this stage, the maser amplification starts to be ofκ (ν)ortotheonewhichresultsfromtheevaluationofeq.15 lu linearatlinecentreandthemaserlinere–broadens. andmadeuseofRi (ν).Additionally,thesolutionsobtaineddur- lu ingthepreviousstepsareindexedwiththesuperscript>ifthey 2.2.Solutionofthetransferequation satisfyRf(ν)>Ri (ν)andwiththesuperscript<onthecontrary. lu lu Once the iterative process has been initialised, a trial value for Tosolvethetransferequationwehaveusedtheshortcharacter- R (v)isobtainedaccordingto: lu istic method (SC) introducedby Olson&Kunasz (1987) . The numerical code based on this method has previously been de- b logR (ν)= (17) scribed in Daniel&Cernicharo (2008) for the case of thermal lu 1−a transitionsin1Dsphericalgeometry.Briefly,intheSCmethod with we assume thatthe sourcefunctioncan be reproducednumeri- callybyapolynomialfunctionoftheopacityintheline(usually Rf>(ν) Ri>(ν) oforder1or2).Ateachiterationtheabsorptioncoefficientsare a = log lu /log lu ugttkhharneeitodewtrdrapandoanisifsanrsftouteisvmmr.eeiTtntqhhrgueaeanstcthseiufoareatnrrsetsandhutteemayeplaposbctpiehwouhnlisaatspvhtiaepobteinloarisnltm,hegaiatmrnriduldaysstphebtoreoeitnaowsntpo.edalIevcntneihtioecaeruonsmrnaalsamryeletcoiluecidnvateiealvllsslye-., Thbe r=adialotigonRRllffifuu><e((lννd))d−earivloedgRRinilil<u>ut((hννi))sway is used to update κ((1ν8)). lu However,thetreatmentformaser propagationisonlyswitched Depending on the resulting specific intensities, one of the pair onwhentheopacityofaline(i.e.τul = Nl−gl/guNu),atapar- (Ri>,Rf>)or(Ri<,Rf<)isupdated.Finally,theiterativeprocess lu lu lu lu ticulargridpoint,isnegative.Forthesamelineandfortheradii is stopped when we have Ri = Rf, within a given accuracy. wheretheopacityispositive,thelineistreatedinastandardway lu lu Figure1showsthetypicalbehaviourofRf asafunctionofRi . relevanttothermalradiation. lu lu The averagedradiationfields determinedusing our methodare Inwhatfollows,wedescribeamethodthatallowsustosolve markedwith squaresandare indexedaccordingto the iteration thetransferequationformasinglines.Itisbasedontheassump- number. tion that the source functions are linearly interpolated. Hence, alonga characteristic,specific intensitiesarederivedaccording to: 2.2.2. Seconditerativescheme Ii = Ii−1e−∆τi +αiSi−1+βiSi (15) Once this process has been achieved,we performan update of the source function at point i according to eq. 12, and using where the α and β coefficientsdependon the opacity∆τ be- i i i the average radiation field R (ν) derived during the first itera- tweenpointsiandi−1. lu tivescheme.Thewholeprocessisthenrepeateduntilweobtain In the case of masinglines, a difficulty arises fromthe fact convergenceforthesourcefunctionatthecurrentgridpoint. thattheabsorptioncoefficientatpointidependsontheangular averageR (v)ofthespecificintensitiesI(θ): lu i 2.2.3. Thirditerativescheme hν R (v) −1 κ (v)=− B n+(v) 1+ lu φ(v) (16) lu 4π lu 0 " J¯+(v)# As previously stated, in order to derive the absorption coeffi- cient,itisnecessarytoknowtheangularaverageofspecificin- where the quantities indexed by a cross (e.g. J¯+) are obtained tensitiesover4πsr.UsingtheSCmethod,thespatialgridisfirst withthecurrentestimateforthepopulationsoftheenergylevels swept from the outermost grid point (i = N) to the innermost (i.e.thepopulationsobtainedatthepreviousiteration).Thesame one (i = 1) providing the intensities I(θ), with i ∈ [1;N] and i applies to the source functions (see eq. 12). Therefore, the ra- θ∈[π/2;π]).Thegridisthensweptintheotherdirectionsothat diative transfer equation becomes integro–differential,whereas the intensities for θ ∈ [0;π/2])are then known.This sweeping 3 F.DanielandJ.Cernicharo:Non–localradiativetransferinstronglyinvertedmasers. obtainedduringthefirststepandtakingintoaccountmaserprop- agation.Thisprocedurehasbeen used in previousstudies (e.g. Yatesetal.,1997;Watsonetal.,2002)andthewayitispresently implementedisdescribedinthenextsections. The models consist of clouds of uniform H density, tem- 2 perature(assumedtobe400Kinallmodels),ando–H Oabun- 2 dance(40levelshave beenconsidered).We haveadopteda di- ameter for the cloud of 4.1014 cm (2.610−4 pc) which is the typical size of bright maser spots in the 22 GHz line of water. Moreover,thissizeprovidesamaximumamplificationpathsim- ilartothatoftheslabdepthsusedinYatesetal.(1997).Thecol- lisionalratecoefficientsareforthecollisionalsystemH O/He 2 (Greenetal.,1993)andarecorrectedinordertoaccountforthe differentreducedmassesoftheH O/H andH O/Hesystems. 2 2 2 WehaveselectedtheseratesratherthanthoseofDubernetetal. (2009) or Faureetal. (2007) as they were the ones used by Fig.1.Variationof theaveragedradiationfield (solidline)asa Yatesetal.(1997).Theseparametersbeingfixed,weperformed function of the initial radiation field entering in the determina- thecalculationsinthe(n(H ),X(H O))planeofparameterspace, tionoftheabsorptioncoefficient.Thedashedlinecorrespondsto 2 2 with respective values in the range [2105;8109] cm−3 and astraightlineofslopeunity.Thesolutionoftheproblemcorre- [210−6;810−4]. Theaccuracyof the resultswill dependon the spondsto theintersectionbetweenthetwocurves.Thesquares gridding adopted. Typically, convergence is reached when the correspondtotheaveragedradiationfieldobtainedateachitera- spatial sampling is such that the opacity between two consec- tion. utive grid points is of the order or less than 1. For all the cal- culations presented here, we adopted a grid with 500 spatial grid points, which might be inadequate for the highest densi- unknown incoming known incoming ties/abundances considered here. However, since we are inter- intensities intensities ested in masinglineswhichare collisionallyquenchedatthese densities/abundances,theeffectoflimitedconvergenceaccuracy does not affect our conclusions. Moreover, the main goal is to θ comparetheeffectoftheradiativetransferandbothmodelcal- lim culationsareperformedwiththesamespatialgrid. AspresentedinSection2,elasticcollisionalratecoefficients i+1 i i−1 forthelevelsinvolvedinmasinglinesenterinthedefinitionof the absorption coefficients and source functions. Test calcula- tionshavebeenperformedbyAnderson&Watson(1993)inor- inward propagation dertotesttheinfluenceoftheseratesandtheyconcludedthatin Fig.2. Schematicdiagramshowingtheavailabilityofincoming mostcasestheirinclusionproducesrathersmalleffects.Hence, intensitiesduringtheinwardpropagation. inthepresenttestcalculations,wehaveassumedthattheelastic ratecoefficientsaresettozero.Inotherwords,inthefollowing calculationsweassumethatC =0inEq.?? ii procedureis adoptedso that at everymomentduringthe prop- agation, only the populations used at the current iteration are neededto derivethe intensities. In the case of masing lines, an 3.1.Pumpingschemewith/withoutmaserpropagation additionalcomplexityarisesfromthefactthatduringtheinward Asafirststep,wecomparetheresultsoftheexactcalculationto propagation,the incoming intensities for θ < θ have not yet lim a simplifiedtreatmentthatconsistsofneglectingthe amplifica- beencalculated(c.f.figure2)withthecurrentpopulationswhile tioninherenttomaserpropagationwhenderivingthepopulation theyenterintheevaluationoftheabsorptioncoefficient. of the energylevelsof the molecule.To do so, we take the ab- Thethirditerativeschemethusconsistsofobtaininganover- solutevalueofthelevelpopulationdifferencewhichthenenters all convergence for the intensities I(θ), with i ∈ [1;N] and i in the definitionofthe absorptioncoefficientsandsourcefunc- θ ∈ [0;π]. This is done by performingsuccessive sweeping of tions. These quantities are defined with the usual expressions thespatialgrid,eachiterationleadingtoanupdateoftheinten- whicharesuitableforthermallines.Thispermitustotreatmas- sitiesI(θ). i inglinesinthesamemannerasthermallines.Thisapproachwas previously adopted in plane parallel non–local calculations by Yatesetal.(1997)withtheaimofpredictingwhichwaterlines 3. Application couldshowmaserexcitation.Theirresultsarediscussedinterm In order to test our method, we have performed model calcu- ofthegaininthemasinglines(seeeq.3ofYatesetal.,1997) lations for the ortho state of the water molecule and the com- ∆n(ν)A c2 parisonismadewithrespecttoasimplifiedtreatmentthataims γ (ν)= ul (19) todescribethemasinglines.Thissimplifiedtreatmentrelieson ul 8πν2 theassumptionthatthecalculationofmaserinversionandthere- which is subsequently averaged over the slab depths (the so– sultingintensitiescanbeachievedinatwo–stepprocedure.First, called depth–weighted gain coefficient defined by eq. 7 of thepopulationsofthe molecularlevelsare determinedneglect- Yatesetal.,1997).Sinceγ (ν)isproportionaltotheabsorption ul ing the specificity of maser radiativetransfer. Secondly,the in- coefficient κ (ν), it is equivalent to consider either the depth– lu tensitiesofthemasinglinesarecalculatedusingthepopulations weightedgaincoefficientortheopacityinthemasingline,and 4 F.DanielandJ.Cernicharo:Non–localradiativetransferinstronglyinvertedmasers. in the following, we choose to discuss the results in terms of line opacities. We emphasise the fact that at this stage, the ap- proximatemethoddescribedheredoesnotinvolveanytreatment specifictomaserradiationandthatcouldaccountforsaturation effects.Thus,thedependenceonfrequencyofthepopulationdif- ference∆n(ν)whichentersin thedefinitionofγ (ν)[orκ (ν)] ul lu isjustgivenbytheDopplerlineprofileφ(ν). Fig.4. Comparison between the opacities derived with (solid lines) or without (dashed lines) accounting for maser propaga- tionforthemasersat22GHz,380GHzand448GHz.Theleft columncorrespondstoacutindensityatn(H )=2107cm−3and 2 thedifferencesareshownwithrespecttovariationsinX(H O). 2 The right column corresponds to a fixed water abundance, i.e. X(H O)=410−4. 2 Fig.3. Isocontoursoftheo–H Oopacitiesatlinecentreforthe 2 6 −5 lineat22GHz,the4 −3 lineat380GHzandthe 16 23 14 21 4 −3 lineat448GHzlines.Theleftcolumncorrespondsto 23 30 themodelswherethetreatmentofmaserpropagationisomitted and the right one to the current results (see text). The isocon- tourvaluesaswellasthecorrespondencebetweengreyscaleand opacityvaluesaredisplayedontopofthetwocolumns.Theiso- contoursthatcorrespondtoopacitiesof-4and-40aredisplayed inthickbluelines.Negativevaluesfortheopacitycorrespondto redlines. Figure3showstheopacityatlinecentreofthe22GHz(6 - 16 5 ), 380 GHz (4 -3 ) and 448 GHz (4 -3 ) masing lines, Fig.5. Brightness temperatures for the 22 GHz line obtained 23 14 21 23 30 obtained in the two treatments (labelled respectively on or off withtheexacttreatment(solidlines)andwiththeapproximated accordingtowhethermaserpropagationisaccountedforornot). treatment(dashedlines).Theintensitiescorrespondtoalineof Figure4showsthelineopacitiesforthesamelineswithrespect sightthatcrossesthe centreof the sphereandare givenforthe tocutsindensityorH Oabundance.Wecanseeonthesefigures restfrequencyoftheline. 2 thatincludingthecurrentmaserpropagationtreatmentleadstoa substantialdecreaseinthepredictedlineopacitiesfortheselines. Indeed, without treating the exact radiation field in the masing 3.2.Two–levelmaserpropagation lines,weobtainminimumopticaldepthsoftheorderof-70for the 22 GHz line and -40 for the 380 and 448 GHz transitions. In order to infer the influence of these changes in line opaci- With our method, the minimum optical depth for the 22 GHz ties, we now consider the resulting masing line intensities. To lineisreducedto-20andto-5fortheothertwolines. doso,anyreasonableapproximatedtreatmentshouldincludea 5 F.DanielandJ.Cernicharo:Non–localradiativetransferinstronglyinvertedmasers. RRlluu // JJ 0.35 0.3 0.35 0.25 0.3 0.25 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 0 1 0.8 0.6 0.4 0 -0.1 -0.2Vls-r 0[k.3m s-1-0].4 -0.5 -0.6 -0.7 -0.8 0 0.2 r/R (a) exacttreatment RRlluu // JJ 30 30 25 25 20 20 15 Fig.6.Emergingbrightnesstemperatureofthe22GHzlinefor 15 10 themodelwithn(H2)=4107 andX(H2O)= 610−4.Thesolid 10 5 linecorrespondstotheintensitypredictedbytheexactcalcula- 5 0 tionandthedashedlinetotheonepredictedbytheapproximated 0 RT(seetext). 1 0.8 0.6 0.4 RTtheorythataccountsforsaturationeffects.Toobtainarefer- 0 -0.1 -0.2Vls-r 0[k.3m s-1-0].4 -0.5 -0.6 -0.7 -0.8 0 0.2 r/R ence point for the currentresults, we proceed as follows: from the populations previously obtained in the approximate treat- (b) approximatedtreatment ment,wecomputethepumpandlossratesΛ(v)andΓ(v).These i i valuesenterinthedefinitionofthepopulationdifference∆n(v) Fig.7.RatioR (ν)/J¯(ν)asafunctionoftheoffsettolinecentre lu througheq.7. Then,foragivenmasingline,theintensitiesare andofthenormalizedradiusinthecloud.Thisratioisgivenfor computedbyadjustingRlu(v)asdescribedinsection2. the 22 GHz line and correspondsto the model with n(H2) = 4 Usingthisapproximation,weobtainlineintensitiesthatdif- 107 and X(H O) = 6 10−4. The two plotscorrespondto (a) the 2 fer largely from those obtained with the exact treatment de- exacttreatmentand(b)anapproximatedtreatment(seetext). scribedinsection2.ThisisillustratedinFig.5forthe22GHz line. This figure shows the brightnesstemperaturesobtainedin thetwotreatmentsatadensityn(H )=4107cm−3,forthecentre In the exact treatment, since the masing line intensities are 2 ofthelineandforalineofsightthatpassesthroughthecentreof takenintoaccountwhenderivingthepopulations,thepopulation thesphere.ThisfigureshowsthatforwaterabundancesX(H O) differencebetweentheupperandlowerlevelofthemasingline 2 >510−5theapproximatetreatmentleadstointensitieslargerby tends to be reducedby induced radiativede–excitation.On the twoordersofmagnitude.Thisoriginatesfromtheopacityover- otherhand,intheapproximatetreatment,theaveragedradiation estimationobtainedintheapproximatetreatmentwhichhasbeen field is largely underestimated. This entails that the amount of discussedintheprevioussection.Additionally,Fig.6compares inducedradiativede–excitationeventsisunderestimated,which the line profiles computed in the two treatments for the model leadstoagreaterdifferencebetweenthepopulationsofthelower withn(H )=4107cm−3andX(H O)=610−4.Inthisfigure,we and upper levels. Consequently, the derived masing line opac- 2 2 seethatthehigherintensityfoundintheapproximatetreatment ityislargerwhichisaccompaniedbyalargerdegreeofsatura- isaccompaniedbyabroaderlineprofile.Thisresultisproduced tionoftheline.So,thedifferencesencounteredinthetwotreat- by the higherline saturation obtainedin the approximatetreat- mentsoriginateintheoverallflowofpopulationfromtheupper mentwithrespecttotheexacttreatment.Thisfactisillustrated tolowerlevel,whichisinducedbyradiativede-excitation.The in figure 7 where the ratio R (ν)/J¯(ν) is plotted as a function evaluationofthisflowofpopulationdiffersinthetwotreatments lu ofthevelocityoffsettolinecentreandofthenormalisedradius sinceitreliesontheaccuracyofthedeterminationoftheinten- inthecloudforthe22GHzlineandforthemodelwithn(H )= sitiesinthemasingline. 2 4107cm−3andX(H O)=610−4,forboththeexactandapproxi- Wenotethatinsection2,eq.7isderivedfromthevelocity 2 matedmethods.Weseeinthisfigurethatintheexactcalculation dependent SEE and from this expression it is seen that an in- thedegreeofsaturationislow,i.e.R (ν)/J¯(ν) < 1atanyradii. creaseintheaverageradiationfieldleadstoadecreasein∆n(ν). lu Incontrast,thesaturationishighintheapproximatecalculation From similar considerationsdealingwith the velocity indepen- withR (ν)/J¯(ν)>10atmostradii. dentSEE,itcanbeseenthatincreasingthevalueoftheradiation lu 6 F.DanielandJ.Cernicharo:Non–localradiativetransferinstronglyinvertedmasers. 4. Maserprediction Most of the information that can be extracted from water line observations relies on the modelling of its excitation. From this point of view, water is a difficult molecule to treat since its high dipole moment causes most of its transitions to be sub–thermally excited (see, e.g. Cernicharoetal., 2006b), har- bouring very large opacities (see, e.g. Gonza´lez-Alfonsoetal., 1998), andmanyof thembeingmaserin nature(Cheungetal., 1969; Watersetal., 1980; Phillipsetal., 1980; Mentenetal., 1990a,b; Menten&Melnick, 1991; Cernicharoetal., 1990, 1994,1996,1999,2006b;Gonza´lez-Alfonsoetal.,1995,1998). Accuratemodelingthusrequires,inadditiontoagooddescrip- tion of the source structure, the availability of collisional rate coefficients. Moreover, as discussed above, special formalisms havetobedevelopedinordertohavearealistictreatmentofthe transferofradiationinthecaseofsaturatedmasers.Themethod developed in the present work for masing lines is used to as- sesswhichwaterlinesareexpectedtoshowmaserexcitationas well as the relative opacity of the masers. To do so, we have performedcalculationsforvariousgaskinetictemperatures,H 2 andwatervolumedensities.Thegridwassetupusingthebound- aries:100K<T <1000K,106cm−3 <n(H )<1010cm−3and k 2 n(H O)∈ 102;103;104;105 cm−3.Additionally,theparameter 2 space is renduced by consideoring that the water abundance can- notexceedarelativeabundanceof10−4withrespecttoH .This 2 range of valuesfor the consideredparametersis appropriateto thecaseofthecircumstellarenvelopesofevolvedstars.Thera- tios of the line opacitieswith respectto the maximum22 GHz opacityaregiveninTable1foro–H OandTable2forp–H O. 2 2 For the two water symmetries, we compare the opacities ob- Fig.8.Theleftcolumncorrespondstotheopacityofthreepurely tainedwiththeratecoefficientsofFaureetal.(2007)(indexedas thermal lines which are obtained in a treatment where masing SET1),Dubernetetal. (2006, 2009);Danieletal. (2010, 2011) linesaretreatedexplicitly.Therightcolumncorrespondstothe (indexedas SET2) and Greenetal. (1993). In these tables, the ratior = τoff/τon oftheopacitiesobtainedwiththetwotreat- τ ratiosobtainedwiththeapproximationintroducedbyYatesetal. ments(seetext). (1997)areindicatedinparentheses. The parameter space considered here is a sub–space of the parameterspaceexploredbyYatesetal.(1997),sincethemaxi- field for the maser transitions would lead to lower population mumgastemperatureintheircalculationis2000Kandbecause differencesforthelevelsinvolvedinthemasertransitions.This they include the pumping by dust photons. In the present case behaviour is not a specific case and we can infer from it that weusealowerboundaryforthetemperaturesince,inordertogo considering explicitly maser propagation will necessarily lead higher,wewouldhavetoextrapolatetheratecoefficients.Since toadecreaseinlineopticaldepthsincomparisontotreatments we aim to compare various sets of collisional rate coefficients, wheretheaverageradiationfieldwouldbeunderestimated. wechoosenottointroduceartefactsduetotheextrapolationpro- cedureinthecomparisonoftheresults.Dustcanplayanimpor- tant role in deriving the populations of water levels. However, 3.3.Thermallines sincewereporttheratioofthemaximumopacityofthemasing Thetwotreatmentsformaserpropagationdifferintheevaluation lineswith respectto the maximumopacityofthe 22 GHz line, of the average radiation field of the masing lines. Considering theconsiderationofdustcanonlyaffectthecurrentresultforthe the current maser propagationtreatment leads to higher values lineswhichareradiativelypumped.Fortheselines,theratiosre- fortheaverageradiationfieldwhich,inturn,wheninvertingthe portedin Tables1 and 2 haveto be consideredas lowerlimits. SEE,leadstoadiminutioninthepopulationdifferencesbetween Ontheotherhand,theratiosreportedshouldbeaccurateforthe levelsinvolvedinmasertransitions.Themodificationofthepop- lineswhicharecollisionallypumped. ulationsoftheselevelssubsequentlymodifiesthewholeenergy In order to compare the current results with the results re- level populations. This is illustrated in figure 8 for three lines portedbyYatesetal.(1997),wehavetoconvertthepopulation whichonlyshowpurelythermalemission.Inthisfigure,wesee densityratioofthelatterstudyintoopacityratios.Todoso,we thattheopacitiesoftheselinesaremodifiedandcanshowvari- start from the definition of the opacity along a ray of length L ationsupto∼ 25%betweenthetwotreatmentsintheregionof alongwhichthedensitypopulationsareuniform.Assumingthat the(n(H2),X(H2O))planewheremasertransitionsarethemost thevelocityprofileφ(ν)canbeexpressedasagaussian,theopac- opaque. Nevertheless, for the range of parameters considered ityatthelineicentreis: here,thenumberoflineswhichsufferfromopticaldepthvaria- tionsgreaterthan10%islow,andforthemajorityofthethermal lines the opacities agree within a few percent between the two τ(i) = 1 × c3A(i)g(i)dn(i) ×L× 2kBTi +σ2 −12 (20) treatments. 8π23 ν3i " m i# 7 F.DanielandJ.Cernicharo:Non–localradiativetransferinstronglyinvertedmasers. Table1.Predictionofmaserlinesfordifferentcollisionalratecoefficientssets. Transition Frequency He p-H p-H o-H o-H 2 2 2 2 (GHz) Green SET1 SET2 SET1 SET2 |τ | 8.2(10.7) 5.3(7.1) 9.1(15.1) 4.9(6.8) 7.6(10.1) 22 6 −5 22 1.00(1.00) 1.00(1.00) 1.00(1.00) 1.00(1.00) 1.00(1.00) 1,6 2,3 10 −9 321 0.73(0.88) 1.11(1.16) 0.67(0.70) 1.17(1.15) 0.78(0.89) 2,9 3,6 4 −3 380 0.53(1.78) 0.83(2.14) 0.50(1.85) 0.93(2.35) 0.59(1.63) 1,4 2,1 6 −5 439 0.48(0.63) 0.83(1.03) 0.48(0.69) 0.91(1.05) 0.60(0.93) 4,3 5,0 7 −6 443 0.02(0.05) 0.15(0.21) 0.11(0.13) 0.16(0.24) 0.17(0.25) 5,2 6,1 4 −3 448 0.42(1.49) 0.68(1.89) 0.39(1.69) 0.74(1.84) 0.49(1.55) 2,3 3,0 1 −1 557 <0.01 <0.01 <0.01 <0.01 <0.01 1,0 0,1 5 −4 621 0.45(1.69) 0.76(2.31) 0.42(1.77) 0.82(2.13) 0.53(1.84) 3,2 4,1 7 −8 1146 N(N) <0.01 N(N) <0.01 N(N) 2,5 1,8 3 −2 1153 0.02(0.02) 0.17(0.18) <0.01 0.20(0.26) <0.01 1,2 2,1 6 −5 1158 0.18(0.80) 0.36(1.61) 0.15(0.56) 0.44(2.07) 0.24(1.37) 3,4 4,1 8 −7 1165 0.09(0.11) 0.21(0.35) 0.04(0.04) 0.21(0.37) 0.15(0.24) 5,4 6,1 7 −6 1278 0.17(0.49) 0.38(1.50) 0.14(0.41) 0.43(1.70) 0.21(0.79) 4,3 5,2 8 −7 1296 0.31(0.76) 0.54(1.70) 0.30(0.90) 0.59(1.89) 0.34(0.78) 2,7 3,4 8 −9 1308 N(N) N(N) N(N) N(N) N(N) 4,5 1,8 6 −5 1322 0.19(0.34) 0.41(0.95) 0.21(0.27) 0.46(0.99) 0.26(0.45) 2,5 3,2 8 −9 1596 N(N) N(N) N(N) N(N) N(N) 5,4 2,7 8 −7 1885 0.01(0.02) 0.06(0.06) 0.01(0.01) 0.10(0.10) 0.03(0.03) 4,5 5,2 5 −4 1918 <0.01 <0.01 <0.01 0.01(0.01) <0.01 2,3 3,2 8 −7 2245 <0.01 0.20(0.30) 0.01(0.02) 0.27(0.43) 0.01(0.02) 3,6 4,3 7 −6 2567 <0.01 <0.01 N(N) <0.01 <0.01 3,4 4,3 8 −9 2577 N(N) N(N) (N) N(N) N(N) 3,6 0,9 9 −10 2619 N(N) N(N) (N) N(N) N(N) 2,7 1,10 9 −8 3150 N(N) N(N) (N) N(N) N(N) 4,5 5,4 Notes.Thefirstlinegivesthemaximum22GHzopacity(τ )obtainedforthedensityandtemperaturerangecoveredinthisstudy(seeSec.4). 22 Foreachmasingline,theratioofthemaximumopacitytoτ isgiven,makinguseoftheapproximatetreatmentdescribedinSec.3(numbersin 22 parentheses)orwiththecurrentmethod.Thetransitionsinboldcorrespondtothemasertransitionspredictedbythepresentworkandnotpredicted byYatesetal.(1997).Thetransitionswithopacityratiobelow10−5 aswellasthetransitionsthatdonotshowpopulationinversionarereported withtheNsymbol. Table2.SameasTable1butforp–H O 2 Transition Frequency He p-H p-H o-H o-H 2 2 2 2 (GHz) Green SET1 SET2 SET1 SET2 |τ | 8.2(10.7) 5.3(7.1) 9.1(15.1) 4.9(6.8) 7.6(10.1) 22 3 −2 183 0.64(1.22) 0.98(1.55) 0.59(1.29) 1.08(1.63) 0.70(1.16) 1,3 2,0 5 −4 325 0.61(1.24) 0.85(1.29) 0.57(1.35) 0.93(1.32) 0.68(1.22) 1,5 2,2 7 −6 437 <0.01(0.02) 0.16(0.23) 0.09(0.12) 0.15(0.22) 0.13(0.21) 5,3 6,0 6 −5 471 0.46(0.65) 0.80(1.15) 0.46(0.70) 0.83(1.06) 0.59(0.97) 4,2 5,1 5 −4 475 0.49(1.40) 0.77(1.79) 0.44(1.42) 0.86(1.80) 0.60(1.60) 3,3 4,0 6 −7 488 N(N) <0.01 N(N) <0.01 <0.01 2,4 1,7 2 −2 752 N(N) N(N) N(N) N(N) N(N) 1,1 0,2 9 −8 906 0.45(1.07) 0.73(1.41) 0.43(1.00) 0.79(1.32) 0.49(0.98) 2,8 3,5 4 −3 916 0.25(0.56) 0.36(0.84) 0.25(0.73) 0.39(0.92) 0.29(0.81) 2,2 3,1 5 −4 970 0.26(0.80) 0.55(2.77) 0.21(0.81) 0.60(3.06) 0.32(1.21) 2,4 3,1 1 −0 1113 N(N) N(N) N(N) N(N) N(N) 1,1 0,0 7 −6 1173 0.19(0.41) 0.41(0.96) 0.18(0.29) 0.45(0.98) 0.23(0.67) 4,4 5,1 8 −7 1191 0.18(0.21) 0.15(0.24) 0.14(0.18) 0.19(0.29) 0.24(0.38) 5,3 6,2 7 −8 1345 N(N) N(N) N(N) N(N) N(N) 4,4 1,7 9 −10 1435 N(N) N(N) N(N) N(N) N(N) 4,6 1,9 7 −6 1441 0.25(0.41) 0.49(1.61) 0.23(0.35) 0.55(1.88) 0.29(0.47) 2,6 3,3 6 −5 1542 0.15(0.15) 0.28(0.35) 0.13(0.11) 0.32(0.49) 0.20(0.35) 3,3 4,2 7 −6 1766 0.06(0.07) 0.24(0.39) 0.04(0.06) 0.30(0.50) 0.07(0.11) 3,5 4,2 8 −7 2162 <0.01(N) <0.01 <0.01 <0.01 <0.01 4,4 5,3 9 −8 2532 <0.01 0.16(0.18) <0.01(0.01) 0.20(0.23) <0.01 3,7 4,4 9 −8 2547 N(N) <0.01 <0.01 <0.01 N(N) 4,6 5,3 6 −5 2962 N(N) <0.01 N(N) <0.01 N(N) 2,4 3,3 8 −7 3670 N(N) <0.01 N(N) <0.01 N(N) 3,5 4,4 Notes.Theratiosarestillgivenasafunctionofthemaximum22GHzopacity. 8 F.DanielandJ.Cernicharo:Non–localradiativetransferinstronglyinvertedmasers. where ν is the rest frequencyof line i, A(i) is the Einstein Interestingly, we find that many lines can show substantial i coefficient for spontaneous emission, g(i) is the degeneracy of inversion. This is in agreement with the observations made by the upperlevelof thetransitionanddn(i)isthe populationdif- Mentenetal.(2008)whoreportthefluxesof9masertransitions ferencepersub–level.Thislatterquantityistheoneconsidered ofwater.Notethatthe437GHz7 −6 whosefirstdetection 5,3 6,0 byYatesetal.(1997)andisdefinedas: is reported in the latter study is expected to show a substantial inversion(aswasfoundinYatesetal.,1997)whilethislinewas dn(i)= nl − nu (21) notfoundtobeinvertedbyNeufeld&Melnick(1991). g g ! l u Finally, Humphreysetal. (2001) presented models for the where the indexes u and l stand respectively for the upper and excitationofthe22,183,321and325GHzwaterlinesinthecir- lowerleveloftransitioni.InEq.20,thegastemperatureT and i cumstellarenvelopes(CSE)ofAGBstars.Theyfoundthediffer- turbulence velocity σ are indexed according to the line, since i entmasinglinestobeexcitedinspecificregionsoftheCSE,thus in the comparison, we only retain the physical parameters that predictingdifferentmorphologiesof the emission maps for the leadtothemaximumopacityforthisparticularline.Theopacity masinglinestheyconsidered.Adirectcomparisonwiththeirre- ratiothuscorrelatetothepopulationdensityratioconsideredby sultsisnotpossible,sinceintheirstudy,themodelthatdescribes Yatesetal.(1997)through: thecircumstellarenvelopeisratherelaborated.Indeed,theyfirst τ ν 3 A(1) g(1)dn(1) computetheH2 volumedensity,gastemperatureandexpansion 1 = 2 (22) velocity from an hydrodynamicalcode. As a second step, they τ2 ν1! A(2) g(2)dn(2) randomlydefinemasingspotsintheenvelopeandsolvethe1D −1 1 transfer problem for the various spots using the LVG approxi- × 2kBT1 +σ2 2 2kBT2 +σ2 2 mation.Thephysicalparametersthatconcerneachemittingspot " m 1# " m 2# isdefinedaccordingtoitsdistancetothestarwithrespecttothe parameters obtained from the hydrodynamical model. Finally, Since the temperatures and turbulence of the models for thelevelpopulationsderivedfromtheLVGcalculationarethen which the ratios are given in Table 2 of Yatesetal. (1997) are used in a code thatpropagatesthe radiationand that takes into unknown,weassumeT =T andσ =σ whileperformingthe 1 2 1 2 account maser saturation in order to calculate the emission of conversion.The maximumerrorintroducedbythis assumption each spot. Performing such a model is out of the scope of the is typically of a factor ∼ 2-3 (consideringthat the 22 GHz has currentstudy,butit is possibleto qualitativelydiscuss theirre- itsmaximuminversionat600KasstatedinYates(1997).)By sults with the currentones. In Fig. 9, we show the opacitiesof consideringcol.5ofTable4,itcanbeseenthatthevaluescur- variouswatermaserlinesasafunctionoftheH volumedensity. rently obtainedandthe one obtainedby Yatesetal. (1997) can 2 Theratecoefficientsusedconsidero–H asacollisionalpartner differbyfactorslargerthan2-3.Thedifferencesmightarisefrom 2 and are taken fromSET2. The opacitiesare obtainedusing the theuseofplane–parallelgeometryinYatesetal.(1997)against treatmentformaserpropagationandforeachline,theopacityis spherical geometry in the current work, or because we do not givenat500Kand1000K. consider the effect introducedby the pumpingby dustphotons inthecurrentstudy.Byexaminingtheresultsofthecomparison reportedforo–H2OinTable4andforthelineswithfrequencies OneoftheconclusiondrawnbyHumphreysetal.(2001)is higher than 1.3 THz (λ < 230 µm), we can see that the ratios that the 321 and 22 GHz are sensitive to the acceleration zone cantakehighvaluesabovethisthresholdfrequencyandtendto oftheCSE.Additionally,the321GHzlineispredictedtotrace increase while the frequencyincreases. Since this behaviour is only a region close to the star while the 22 GHz emission ex- correlatedwiththeshapeofthedustemission,itcanbeguessed tends further outside (see Fig. 9 of Humphreysetal., 2001). thataquantitativecomparisonbetweenthetwoworksisplagued Considering the opacities reported in Fig. 9, we can see that bythe absenceofconsiderationof dustradiationin the present the current results support those findings. Indeed, at densities work. ∼ 109 cm−3, the 22 GHz line is the only masing line which is By comparison to previous calculations stillsubsequentlyinverted.AtsuchahighH density,theother 2 (Neufeld&Melnick, 1991; Yatesetal., 1997), we find that masing lines are found to be collisionaly quenched.Moreover, the 8 − 7 (1165 GHz), 7 −6 (1173 GHz), 8 − 7 the 321 GHz line is inverted only at relatively high H den- 5,4 6,1 4,4 5,1 5,3 6,2 2 (1191GHz)linescanshowpopulationinversionwithsubstantial sities, ie. n(H ) > 2107 cm−3 which support the fact that this 2 opacities, independently of the set of rate coefficients used. lineonlytracestheinnermostpartoftheCSE.Humphreysetal. These lines were not predicted to be masers in the previous (2001) also find that the emission in the 325 GHz line resem- studies. The rest of the lines considered in this work agree blesthatofthe 22GHz.Inthe currentstudy,byexaminingthe with the predictions of Yatesetal. (1997) with respect to the behaviour of the opacities of those two lines shown in Fig. 9, possibility of masing action, at least for the lines that show we can indeed see that these lines have similar excitation con- substantialinversion. ditions. AdditionalyHumphreysetal. (2001) predictedthe 183 Consideringtheeffectsintroducedbythecollisionalrateco- GHzlinetobeinvertedintheoutermostpartoftheCSE.Inthis efficients,wefindthatthevariationsfromonesettoanotherare region,theH densityistoolowtoproduceinversionintheother 2 moderate.Thelineswhicharefoundtobeinvertedarethesame, masers.ReferringtoFig.9,wecanseethatatn(H )∼106cm−3, 2 independently of the set considered, and most of the opacities the183GHzlineisindeedsubsequentlyinvertedwhiletheother show variations of the order of a factor 2 or less. Our method linesarenot.Finally,consideringthebehaviouroftheopacities totreattheRTofthemaserlinesintroduceslargedifferencesin reportedinFig.9,itispossibletoqualitativelypredictthemor- the computed line opacities; indeed, for most of the lines, the phologythatthelinesnotconsideredbyHumphreysetal.(2001) opacitiesderived with the exact treatmentare lower by up to a should have.As an example,the emission in the 380 GHz line factor 4–5 in comparison to the opacities derived with the ap- shouldresemblethe183GHzoneandthe439and470GHzlines proximatedtreatment. shouldbehavesimilarlytothe321GHzline. 9 F.DanielandJ.Cernicharo:Non–localradiativetransferinstronglyinvertedmasers. Table3.ComparisonofthecurrentresultswithYatesetal.(1997)’sresults. o/p–H OTransition Frequency(GHz) Yates97 current Yates97/current 2 6 −5 22 1.0 1.00 1.00 1,6 2,3 10 −9 321 0.59 0.88 0.67 2,9 3,6 4 −3 380 1.46 1.78 0.82 1,4 2,1 6 −5 439 0.13 0.63 0.20 4,3 5,0 7 −6 443 0.14 0.05 2.89 5,2 6,1 4 −3 448 1.12 1.49 0.75 2,3 3,0 5 −4 621 0.36 1.69 0.21 3,2 4,1 6 −5 1158 0.89 0.80 1.11 3,4 4,1 7 −6 1278 0.09 0.49 0.19 4,3 5,2 8 −7 1296 1.74 0.76 2.29 2,7 3,4 6 −5 1322 3.11 0.34 9.17 2,5 3,2 8 −7 1885 0.31 0.02 15.7 4,5 5,2 5 −4 1918 1.74 <0.01 >173 2,3 3,2 8 −7 2245 0.86 <0.01 >85 3,6 4,3 7 −6 2567 1.17 <0.01 >116 3,4 4,3 3 −2 183 0.83 1.22 0.68 1,3 2,0 5 −4 325 1.02 1.24 0.82 1,5 2,2 7 −6 437 0.10 0.02 4.80 5,3 6,0 6 −5 471 0.07 0.65 0.11 4,2 5,1 5 −4 475 0.25 1.40 0.18 3,3 4,0 9 −8 906 0.60 1.07 0.55 2,8 3,5 4 −3 916 0.48 0.56 0.86 2,2 3,1 5 −4 970 1.19 0.80 1.49 2,4 3,1 7 −6 1441 1.07 0.41 2.62 2,6 3,3 6 −5 1542 0.11 0.15 0.72 3,3 4,2 7 −6 1766 0.15 0.07 2.21 3,5 4,2 Notes.Comparisonoftheopacitiesobtainedinthepresentwork(column4)totheoneestimatedfromYatesetal.(1997)(column3).Inthislatter case,theopacitiesareobtainedfromthepopulationdensityratiotheyreportedandmakinguseofEq.22(seetextfordetails).Thelastcolumn givestheopacityratioobtainedinthetwostudies. 5. Conclusions in the two treatments. Given the larger computational time requiredto solvethe maser propagation,the approximation Thepresentworkdealswithobtainingaself–consistentsolution used in this study is a good alternative if one is concerned forthe problemofmaserpropagationwithinthescopeofnon– withinterpretingtheemissionofnon–masinglines. local radiative transfer. Test cases are presented for the water 5. WegivepredictionsofH Omaseropacitiesforphysicalcon- molecule in which the importanceof dealing with maser prop- 2 ditions typical of circumstellar envelopes of AGB stars. In agationisemphasised,bycomparisontoa simplifiedtreatment addition,the predictionsbased on varioussets of rate coef- fortheradiativetransfer.Themainconclusionsare: ficientsinvolvingHe,p–H oro–H arecompared.We find 2 2 thatfromonesettoanother,therelativeopacitiesofthemas- 1. Aself-consistentsolutionfortheradiativetransferinmasing inglinesaresimilar.However,theabsolutescaleoftheopac- linescanbeobtainedwithinthescopeoftheshortcharacter- itiesarewithinafactor∼2dependingonthesetused. isticmethod,withsubsequentmodificationofthealgorithm usedtotreatthermallinesduetotheintegro–differentialna- tureofthetransferequation. Acknowledgements. The authors want to thank the referee M.D. Gray for its useful comments that enable to improve the current manuscript. We also 2. The preconditioningof the statistical equilibriumequations want to thank A.Baudry foruseful discussions concerning the current study. isnotfeasibleusingthecurrentmethodandtheNgacceler- The authors want to thank J. Roberts and T. Bell for their careful reading ationtechniquecannotbeused,sothatthealgorithmhasthe of the manuscript. This paper was partially supported within the programme convergencerateoftheLambdaiterativescheme. CONSOLIDER INGENIO 2010, under grant Molecular Astrophysics: The Herschel and ALMA Era.- ASTROMOL (Ref.: CSD2009- 00038). We also 3. Thetestcasesperformedforthewatermoleculehaveshown thanktheSpanishMICINNforfundingsupportthroughgrantsAYA2006-14876 thatneglectingmaserpropagationcanleadtosubstantialer- andAYA2009-07304. rorsintheestimateofthemasinglineopacities,withdiffer- encesgreaterthanafactor2.Dealingwithstronglyinverted masers,itmeanserrorsofseveralordersofmagnitudeinthe References predictionoflineintensities. 4. In the regionwhere strongmasinglinesare present,the ra- Anderson,N.,&Watson,W.D.1993,ApJ,407,620 Bettwieser,E.V.,&Kegel,W.H.1974,A&A,37,291 diationfield in these linesperturbsthewhole populationof Bettwieser,E.1976,A&A,50,231 the molecule. Therefore, including maser propagation also Cernicharo, J.,Thum,C.,Hein,H.,John,D.,Garcia,P.,&Mattioco, F.1990, modifiesthedeterminationoflineopacitiesforpurelyther- A&A,231,L15 mallinesandinthepresenttestcases,maximumdifferences Cernicharo,J.,Gonzalez-Alfonso,E.,Alcolea,J.,Bachiller,R.,&John,D.1994, ApJ,432,L59 oftheorderofafew10%arefoundbetweenthetwometh- Cernicharo,J.,Gonza´lez-Alfonso,E.,Bachiller,R.1996,A&A,305 ods adopted. Nevertheless, the number of lines affected is Cernicharo,J.,Pardo,E.,Serabynetal.,1999,ApJ,520,L131 ratherlowandmostofthelineshaveidenticalopticaldepths Cernicharo,J.,Pardo,J.R.,Weiss,A.,2006,ApJ,646,L49 10