Non-local exchange effects inzigzagedge magnetismofneutral graphene nanoribbons Jeil Jung1, ∗ 1Department of Physics, University of Texas at Austin, Austin, USA Westudytheroleofnon-localityofexchangeinaneutralzigzaggraphenenanoribbonwithinthep -orbital unrestricted Hartree-Fock approximation. Within this theory we find that the magnetic features are further stabilized for both the intra-edge and inter-edge exchange compared to mean field theories of zigzag ribbon based onlocal exchange (liketheHubbard model or theab-initioLocalDensity Approximation). Theinter- 1 edgeexchange produces anenhancement oftheband-gap of themagneticground-state solutions. Theeffect 1 of this enhanced exchange on the edge states can not be satisfactorily achieved by a local interaction with 0 renormalizedparameters. 2 PACSnumbers:75.30.Et,75.75.+a,73.22.-f,73.20.-r n a J I. INTRODUCTION althoughthesolutionsremainsimilarinmanyaspects. 8 We start in section II introducingthe Hartree-Focktheory 2 inzigzagribbonsandcastitintheformofatwodimensional Zigzag terminated graphene ribbons have recently at- ] tracted a lot of attention both by theorists1–23,25 and edgestatebandsmodel13,15extendingbeyondtheformulation l l experimentalists26–39 partly due to the surge in popularity based on the Hubbard hamiltonian. In section III we show a h of graphene after seminal transport experiments.40–42 The within this framework how the non-localexchange modifies theeffectivehamiltonianmatrixelementswhenweextendthe - uniquepropertiesofzigzagedgelocalizedstateshasprompted s onsiteinteractionHubbardmodeltoincludefartherneighbor e usingzigzagterminatednanoribbonsasatestbedforpropos- interactionterms. We then moveon to discuss in section IV m alsofmagnetismingraphiticsystems43 orforillustratingex- the localization properties of the edge state wave functions otic physics related to the bulk topology of single sheet of . at multilayergrapheneinpresenceofstrongspin-orbitcoupling alongthedirectionoftheribbondiscussingthedependenceof theintra-edgeband-gapasafunctionofthe electroninterac- m ormagneticfields.44–47Recentexperimentshavefoundtraces tionstrength.SubsequentlyinsectionVweassesstheimpact oflocalizedspinpolarizationatzigzagedgesofgraphene37–39 - ofnon-localexchangeontheenergeticsoftheinter-edgean- d in agreement with theories predicting spin polarization at n zigzag edges in presence of electron interactions.1,7,9,11 The tiferromagneticgroundstate. Wefinallyclosethepaperwith o asummaryandconclusionssection. agreement of the qualitative features between solutions pre- c dicted by differentmethods such as the Hubbard model and [ DFT with different semi-local approximations for the en- 1 ergyfunctionalspointtowardsarobustunderlyingpropertyof v II. TWOBANDSHARTREE-FOCKTHEORYINZIGZAG these systems for which the magnetic solutions are not very 7 RIBBONS sensitive to the specific details of electron interaction. Con- 4 sidering that magnetic orderingis a long-rangedphenomena 4 5 onenaturalquestionthatfollowsishowmuchphysicsweare A simple and yet fairly accurate way to study edge mag- . missingbyaninadequatetreatmentofnon-localexchangein netisminazig-zagribbonin ameanfield theoryistocalcu- 1 our solutions. The Hubbard model used in several previous late,foreachk-point,theeffectofinteractionontheedgestate 0 1 papers13,50,54,55reliesonastrictlylocalonsiteinteractionterm wavefunctionsnotallowingedgeandbulktomixtheirwave 1 while the commonapproximationsof the energyfunctionals functions13,15. Theseedgestatewavefunctions(seeappendix : in DFT56,57 are modeled from local or semi-local exchange formoredetails)becomeexponentiallylocalizedattheedges v and correlation energies58 of the homogeneouselectron gas. whenever2p /3a+1/W k forsufficientlywideribbons5,60 i X In both cases the description of the exchange hole tends to wheretheribbonwidthi≤sW| |=√3aN/2andN isthenumber r beexcessivelyshortrangedin additionto uncertaintiesasso- ofatompairsintheunitcellacrosstheribbonandthelattice a ciated with self-interactionerrorsin the case of DFT. In this constantisa=2.46A˚.Welabelinanabbreviatednotationthe workwerevisittheproblemofedgemagnetization,predicted ribbonsedgestatesas k and k+ ,antisymmetricandsym- | −i | i by mean field theories in zigzag nanoribbons, within Unre- metricwavefunctionsacrosstheribbon,thatcanbesymmet- stricted Hartree Fock (UHF) approximation with non-local ricallyandantisymmetricallycombinedtoobtainbasisfunc- exchange, that does not suffer from the shortcomings of the tions that are mostly centered either at the (L)eft or (R)ight previous approximations, and study systematically different edge in the ribbon.15 We denote the respective k-dependent truncationrangesfortheelectroninteraction. wave functionamplitudeat each lattice site l in the unitcell as L and R . We can use this new basis to represent the We find that a non-local interaction enhances the gaps in kl kl Hamiltoniansasatwobytwomatrixforeachspins = / the band structure, a feature that can be traced back to both ↑ ↓ the inter-edge tunneling term and intra-edge magnetic order. Aswediscussbelowmodelswithshort-rangeinteractionare Hs (k)= HLL,s (k) HLR,s (k) . (1) unabletomimicthelargesizeofthegapinaconsistentway HRL,s (k) HRR,s (k) (cid:18) (cid:19) 2 The tight-binding band term Hamiltonian is described by a and the LDA prediction7 of 0.5eV. We write the two-bands simple nearest neighbor hopping term g = 2.6eV. In this effectiveHamiltonianinthefollowingway: 0 − LR basis representation the Hamiltonian would consist of a tunnelingtermmixingstateslocatedatbothedgesintherib- Hs (k) = D AF(k)st z+D F(k)s I+ts (k)tx, (8) bonforeachspin wherethepaulimatricestm andIareactinginthespaceofleft 0 t (k) andrightedgesands is+( )forup(down)spin. Therenor- HTB(k)= t (k) TB0 (2) malized inter-edgetunneling−ts (k) is given by the bare hop- TB (cid:18) (cid:19) ping plus a spin dependent enhancementfrom the exchange where t (k) is the energy dispersion for the tight-binding interaction. The intra-edge exchange potentials D AF(k) and TB edgeconductionband(i.e., the basisweuse consistsoftwo D F(k)correspondtoaparticularchoiceofD AF (k)orD F (k) / / eigenstatesofHTB(k)). Foraneutralribbontheelectrostatic such that they are positive quantitiesat k ↑p↓/a. Writ↑te↓n in ∼ Hartreetermcancelswiththepositivebackgroundchargeand terms of the matrix elements defined in Eq. (3,4,5) for each contributesonlywith a constanttermC0 in the diagonalele- momentumktheyare: mentsthatcanbechosenatourconvenience. Thentheinter- action term of the Hartree-Fockhamitonianprojectedon the ts (k) = HLR,s (k) (9) two-bandsLRbasiseffectivelyreducestoanexchangecontri- 1 butiononboththediagonalandoffdiagonalmatrixelements D As F(k) = 2(HLL,s (k)−HRR,s (k)) (10) 1 HLL,s (k) = C0−(cid:229) LklLkl′FXll,′s (k) (3) D Fs (k) = 2(HLL,s +HRR,s )(k). (11) ll ′ HLR,s (k) = tTB(k)−(cid:229) LklRkl′FXll,′s (k) (4) Nthoerteeitshantowspeinha-mveixaisnsgumteremd.aTchoellrienfeoarresthpein4arr4anHgaemmieltnotnainadn HRR,s (k) = C0−(cid:229) Rlkll′Rkl′FXll,′s (k) (5) m(8a)tfroixriesacrehdsupciendstuobt-wspoacbelo.cTkhdeiaegnoenrgalysduibs×-pmerastiroicnessaisnsoEcqi-. ll′ atedwiththeedgestatesofthetwo-bandHamiltoniancanbe wherewehavedefined writtenas FXll,′s (k) = (cid:229) UXll′ k′−k nk′ll′,s (6) Es±(k)=s D F(k)± D AF2(k)+ts2(k). (12) k ′ (cid:0) (cid:1)(cid:10) (cid:11) q IntheAFcasethetermD F(k)inequation(8)amountstoan where nkll,s is the density matrix in the lattice Bloch ′ ′ edge-independentvalue for both up and down spin and can statesandUXll′(k′−k)representsexchangeCoulombintegrals be set to zero. We notice that the exchange spin splitting whoseexplicitexpressionsarepresentedintheappendix.The terms given by the diagonal elements D AF(k) have opposite Coulombintegralsbetweenthep -orbitalslocatedatdifferent signs for left and right edge states, and a global sign rever- sitescanbeapproximatedinHartreeatomicunitsbyeffective salwhenweconsidertheoppositespinHamiltonian. Onthe termsoftheform64,65 otherhand,inferromagneticself-consistentsolutionswegeta 1 nonzeronetspinpolarizationinthesampleduetoedgeelec- V (d)= (7) eff e a2+d2 tronswithspinspointinginthesamedirection.Inthiscasebe- r o causeD As F =0theintra-edgeexchangeenergygainincluded where d is the distance betwepen lattice sites and the bond- in D sF(k) is reflected in the overall shift of the band energy ing radius of the carbon atoms a =a/ 2√3 accountfor a foreachk. Theoppositespinstate isshiftedin anequaland o small damping of the interaction due to the shape and finite oppositedirectionandthebandssplitinanamountof2D F(k) (cid:0) (cid:1) spreading of the wave function around the lattice. The on- ateachk-point. siterepulsiontermremainsunknownandiscommonlybrack- etedbetweenU =2eV andU =6eV.49–55 Inourcalculation we used a relatively small value ofU =2.5eV, considering III. NON-LOCALEXCHANGEANDTHEEFFECTIVE thattheonsiterepulsionstrengthofU =2eV intheHubbard HAMILTONIANMATRIXELEMENTS model where the Coulomb tail is neglected is enough to re- producetheLDAbandstructures13. Weincludeinourcalcu- Thenon-localityinexchangeappearwhentheCoulombin- lations an effective screening of e =4 resulting in a global teraction range is extended beyond the onsite repulsion and r dampingoftheinteractionstrengthbyafactor1/4toaccount is most easily explored comparing the Hartree-Fock Hamil- for possible effects of dielectric screening (usually e =2.5 tonian matrix elements of equations (3,4,5) with those we r in SiO ) and additional screening effects due to sp orbitals obtain using the Hubbard onsite repulsion model. We have 2 2 that are neglected in our approximation. The range of the usedthevalueofU =2eV forourreferenceHubbardmodel Coulombinteractionis truncatedto up16nearestneighbors. calculationsfollowing the conventionof previousworks13,15 Withtheaboveprescriptionsweobtainforthegroundstateof to match the LDA band gaps. In Fig. 1 we show a com- the neutralsystem an intra-edgeinteractiongapnear ka p parisonofthe bandstructuresinthe HF andHubbardmodel of 1.4eV midway between the B3LYP prediction9 of 2.∼2eV forthe lowerenergyAFand higherenergyFconfigurations. 3 11 EHAFub 11 EHFub V0 33 EHAFF EHFF 11 V2 eVeV()() 00..55 00..55 eVeV()() UVef1f6 eVeV()() 22 EEbandband 00 00 AFAFkk∆()∆() 00..55 tktk()()↑↓↑↓// 11 V0 --00..55 AAFF --00..55 FF V2 V16 00 00 ππ//22 22ππ//33 ππ ππ//22 22ππ//33 ππ 22ππ//33 ππ 22ππ//33 ππ kkaa kkaa kkaa kkaa FIG.1: (Coloronline)ComparisonofHFandHubbardmodelband FIG.2: (Color online) Enhancement of the matrixelements of the structuresforthelowerenergyAF(leftpanel)andmeta-stablehigher effectivehamiltoniandefinedinequations(9,10,11)evaluatedinthe energyF(rightpanel)spinconfigurationsforananoribbonwithN= HFapproximationonaribbonwithN=20.Thesubscriptsinthela- 20 carbon atom pairs in the unit cell. In the HF solution we find belindicatethenumberofnearestneighborsconsideredinthetrun- enhancedband-gapopeningsduetotheincreaseinstrengthofboth catedrangeoftheeffectiveCoulombinteraction. Wedonotrepre- intra-edgeexchangemanifestednearka p andinter-edgetunneling senttheresultsforFconfigurationbecausethebehaviorissimilarto thatbecomemoresignificantaswemov∼eawayfromthispoint. whatisfoundforAFsolutions. LeftPanel: Valuesoftheintra-edge exchangepotentialD AF(k)obtainedintheHFapproximationfordif- ferentinteractionranges. Withanappropriatechoiceofaneffective Ueff=5.3eV intheHubbardmodelwecanmatchD AF(p /a)ofthe HF calculation for most of the region in the Brillouin zone where The effects of non-local exchange in the band structure can thewavefunctionsareedgelocalized. Theredcurverepresentsthe beunderstoodmoreclearlyseparatingtheircontributionsfor effectiveHubbardmodelthatagreeswellwiththeHFcalculationin theintra-edgeexchangepotentialscorrespondingtothediag- almosttheentirerangeofedgestateszone k 2p /3a+1/W.Right | |≤ Panel: Enhancement of tunneling amplitudes t (k) for AF solu- onal elements of the effective Hamiltonian obtained through / tionsinpresenceoflong-rangedinteractionrepr↑es↓entingthegreater equations (3,5,10) and the off diagonal inter-edge tunneling coherence between wave functions located at each sublattice, and giveninequations(4,9). Wediscussourcomparisononlyfor thereforeeachedgeintheribbon. Foronsiteinteractionsthetunnel- AFmatrixelementsbecausetheeffectivematrixelementsfor inghasthesameformasthetight-bindingconductionbanddisper- F solutions remain qualitatively identical. These matrix ele- sion. mentsare representedin Fig. (2)for differentchoicesin the truncationoftheinteractionrangesfortheCoulombintegrals in equation (7). Since the left and right basis functions are strictly localized on one of the sublattices the contributions to theedgeribbonatom, resultingin a k-dependentbehavior to the diagonaltermD AF(k) aredueto interactioncouplings proportionalto thatof the L2 locatedat the edgesites. This kl within the same sublattice, therefore these terms contain in- remarkablebehaviorforwhicheveryadditionalneighborcon- formationofexchangewithin thesame edge atoms. One in- tributionin theexchangepotentialhasthesame k-dependent teresting feature we observe is that the function D AF(k) ob- behavior in the edge states region is most likely the reason tained for the fully non-local calculation can be effectively forthegoodoverallagreementoftheedgestatepropertiesin reproduced in most of the edge states zone of the Brillouin zigzagribbonscalculatedwithinasimpleHubbardmodeland zone(k 2p /3a+1/W)bytheHubbardHamiltonianwith othermeanfieldcalculations. OutsidethisregionoftheBril- a large|r|e≤ffective onsite repulsion. This effective repulsion louinzonewefindsubstantialdifferencesofthepotentialsfor takes the value of U =5.3 eV for the interaction param- theHubbardmodelandHartree-Fockhamiltonianmatrixele- eff eters we have chosen for the HF calculation, which is very mentsbutthesedifferencesdonotintroducerelevantchanges close to the critical value of U / g = 2.23 above which in the magnetic configurationof the edges. From the results C 0 the choice would be unphysical bec|au|se the ground-state of shownaboveweexpectthatthequantitativeagreementofthe a2Dgraphenesheetdevelopsanantiferromagneticspinden- gapatka p betweenLDAapproximationandtheHubbard sity wave solution1. For every choice in the cutoff for the calculation∼s13withU =2eV suggeststhattheLDAwillhave Coulombinteractionrangewecouldobtaindifferenteffective a tendency to underestimate the energetics of the ferromag- choices of U that can reproduce D AF(k) satisfactorily. In netic spin alignment along a zig-zag edge. In fact the LDA eff theHubbardmodelthekdependenceofthediagonaltermsof approximation56 wouldintroducea largergapopeningif the the Hamiltonianin Eqs. (3, 5) is manifestlydueto the coef- spin density of the core electronsof carbonwere considered ficientsL2 ofthebasisfunctionwiththelargestcontributions whenevaluatingthespindependentLDAexchangepotential. kl comingfromthe lattice sites atthe edgeanddecayingexpo- The off diagonal tunneling term ts (k) given in equation nentiallyaswemoveintothebulk. Inthecorrectionsdueto (9) consists of a tight-binding term and an interaction term fartherneighborinteractions(i.e.,beyondtheHubbardmodel) couplingdifferentsublattices. The onsite interactionterm in stillthedominantcontributiontothematrixelementD AF for the Hubbard model cannot couple different sublattices, and a given distance of electron interaction are those connecting thereforethetwoedgesites,andthematrixelementsreduces 4 1.5 to the tight-binding band dispersion of the conduction edge band15. Thismatrixelementcanbeenhancedinthepresence AF of the long-rangedinteraction. The enhancedcoherence be- TB tween leftandrightedgesolutionslead to an increase in the |) 1 band-gap between the valence and conduction bands of the x ( antiferromagneticsolution. This enhancementof the tunnel- e g ing term ts (k) is more pronounced for k-points outside the ed F 0.5 edgestateszonebecausethedensitytailsspreadmoreintothe | bulk. Howeveritremainsessentiallyzerointhesurroundings of ka p since the wave functionsare strongly localized at ∼ theribbonedgeborders. 0 The ribbon width dependence of both Hartree-Fock and -10 -5 0 5 10 Hubbardsolutionsremainsimilar. Previously15wehadillus- x/a tratedusingtheHubbardmodelthattheribbonwidthdepen- denceofthesolutionscanbesummarizedthroughthebehav- FIG. 3: (Color online) Wave function localization along the rib- ior of the Hamiltonian matrix elementsnear the valley point boncenteredatdifferentsitesintheribbonunitcellcalculatedfora k 2p /3athatobeythefollowingscalingrulesasafunction ribbonwithN=12corresponding totheantiferromagneticground ∼ ofribbonwidthW statesolutionandinteractionfreetight-bindingsolution.Wecanno- ticeasubstantialspreadingofthewavefunctionattheribbonedge D AF/F(k) = W−1D AF/F(qW) (13) envelopingabout7unitsoflatticeconstantaalongtheribbon. g t(k) = 0 t˜(qW) (14) W e where q=ka 2p /3 is the dimensionless momentum mea- functionsarecalculated,59showsusthewaytheelectronslo- − sured from the valley point and the functions D AF/F, t are calizeinrealspacealongtheedge. Infigure(3)wefocuson functionsthatdonotdependonthewidthoftheribbon.These therowofatomsattheribbonedgeandweshowthattheedge rules for wide enough ribbons are not altered weith the epres- state wave functions spread about seven atomic lattice sites ence of non-localexchangeshown in equations(3, 4, 5) be- on average, and this spreadinglength is essentially same for cause the additionalnon-localtermsare quadraticin L and paramagnetic tight-binding solutions and the solutions with kl R . These in turn follow a similar scaling rule that can be edge spin polarization. These featuresare robust to changes kl obtainedusingacontinuummodel15 in the ribbon width and the details of the Coulomb interac- tion with negligibly small departures from this form when R = W 1/2R (15) wechangethestrengthoftheCoulombinteractionormodify kl − qW,l the rangeof the Coulombinteraction. This robustfeatureof L = W 1/2L (16) kl − qW,l the wide smearingof the electron densityon the edge atoms e into the neighboring atoms located several lattice constants whereRqWl andLqWl arescaledfunectionsthatdonotdepend away along the edge direction is key in producing the long onthewidth oftheribbon. Hencetheband-gapsize andthe reachingferromagneticspincorrelationlengthinazigzagrib- positioneofthegaepaswellastheupanddownspincrossover bonedge.1,12 Duetothisfarreachingoverlapoftheelectron point of the F solution (measured from the valley point) all density along the edge even short ranged exchange interac- followaW 1 ribbonwidthdependence. − tionsareabletoconnectedgestatescenteredarounddifferent edgeatomsandinduceanenergeticallyfavorableparallelspin alignment. IV. INTRA-EDGELOCALIZATIONPROPERTIESOF An intuitive way to relate this edge wave function local- EDGESTATES ization length along the edge with the band structure or the ribbons near ka p is by relating the gain of exchange en- ∼ Weexploreherethepropertiesoflocalizationofthezigzag ergy per particle for the occupied electrons near the edge edgestatesalongthexaxis,thedirectionofperiodicityinthe atoms through D = D AF/F(p /a) with an effective local- max ribbon. We estimate this quantity in real space evaluating a izationlengthl throughtheformula partialFouriertransfomofthek-pointdependentdensitycom- ponentcenteredatlatticesitelintheribbonunitcell e2 D = . (18) max e l r Fls (x)=Zk>|2p /3a+1/W|dke−ikx|Y kl(r)|2 (17) eWnet cphreosiecnest ionfteablcealIcuthlaetevdalfuoersaofriDbbmoaxnaonfdNl =fo1r2diaftfoemr- r whereY (r)isthelth componentofedgebandBlochwave pairs width. In this analysis we define the onsite term as kl function.Theintegrationinkspaceisovertheregionofedge U=10/e eV makingitdependentofthedielectricscreening. r states which give the relevant contribution to the edge spin ThevalueofD remainpracticallyconstantaswemakethe max polarization. Thisdefinition,reminiscentofthewayWannier ribbonwiderandalreadyforN=12itgivesagoodestimate 5 of the infinite width limit. The resulting values of l shows bandlabelsandspinindex.InFig. (4)weshowtheexchange energydifferenceasafunctionofk-pointintheBrillouinzone er 1 2 3 4 5 forthe Hubbardmodelandthe Hartree-Fockapproximation. Wecanobservethatthedetailsofk-pointdependentcontribu- D max 2.35 1.16 0.78 0.58 0.46 l 2.49 2.52 2.5 2.5 2.5 N =24 N =24 N =30 N =30 TABLE I: Effective localization length l (in units of lattice con- 11 )) N =48 N =48 stant a=2.46A˚) estimatedfromtheshiftfromtight-binding bands VV ee iDnmgaxra(pihneenVe)nnaneaorribkabo∼nsp. Wforeacnatnifeorbrsoemrvaegntheatitclspdinoecsonnofitguchraatniogne mm(( 00..55 Hub 22 HF muchasafunctionofthevaluesofdielectricconstantsconsidered. kk)) (( Wecanobservethatthemagnitudesofl areconsistentwiththees- XX εε 00 timationsthatcanbeextractedforthelocalizationlengthspresented ∆∆ intheprevioussection. 00 --00..55 onlyaverysmallvariationwhendifferentvaluesoftherela- ππ//22 22ππ//33 ππ ππ//22 22ππ//33 ππ tivedielectricconstante areused,inagreementwiththefact kkaa kkaa r thattheshapesofthedensitylocalizationremainspractically FIG.4: (Coloronline)Comparisonofk-pointresolvedexchangeen- unchanged. ergydifferencesbetweenHubbardandHFcalculations. Leftpanel: ExchangeenergydifferencedensityD eX(k)forHubbardcalculation withU =2eV Mostoftheexchangeenergydifferencecomesfrom V. ENERGETICSOFINTER-EDGEEXCHANGE theregionsof k 2p /3awhiletheregionka p alsoaddsasmall COUPLING | |∼ ∼ contribution. Rightpanel: Inpresenceoflongerrangedinteractions wefindcontributions totheenergy differences in awider range of The nature of antiferromagnetic spin polarization of edge k-pointsaroundthevalleypoint2p /3athankstotheenhancedintra- states on differentsublattices (and therefore different edges) edgetunnelingterms. was studied previouslyas an unusualtype of superexchange interaction15 whereitisenergeticallyfavoredwithrespectto theferromagneticstatebothinthekineticenergyandinterac- tionstotheexchangeenergydifferenceissubstantiallymodi- tion energy. For the Hubbardmodel the inter-edge coupling fiedinpresenceofnon-localinteractions.Theglobalenhance- ismediatedbythebandHamiltoniantunnelingandthe local mentinmagnitudeleadstoafurtherstabilityofAFsolutions. spin-polarizationis providedby intra-edge exchange. In the In particular the off diagonal interaction terms in the effec- presenceofnon-localinteractionstheinter-edgeoff-diagonal tiveHamiltonianfurtherenhancesthestabilityofAFsolutions tunnelingtermplaysaroleindeterminingthetotalexchange throughanenhancedinter-edgetunneling. energy. Inthissectionweexaminetheimpactofnon-locality The ribbon width dependence of the total energy differ- ofexchangein theenergeticsoftheground-statesolutionby ences can be derived from similar considerations as in ref- obtainingthedifferencesinthetotalenergiesbetweenAFand erence[15]andfollowsaW−2 decaylaw. F mean field solutions. In a neutral nanoribbon the electro- staticHartreeenergyisthesameinbothAFandFconfigura- tionsandthetotalenergydifferenceperedgecarbonatomD E VI. SUMMARYANDCONCLUSIONS consistsofthekineticenergytermandtheexchangeterm Inthispaperwehaveaddressedtheeffectsofnon-locality D E=EF EAF =D T+D E . (19) of exchangein the edge states of a neutral zig-zag graphene X − ribbon from different points of view. We started with a for- The kinetic energy difference can be calculated from one- mal introduction on how the far reaching interaction terms body averagesof the tight-bindingHamiltonian for each oc- between distant sites can influence the values of the matrix cupiededge-bandstatesandisessentiallythesamederivation elements of the effective two-bands Hamiltonian describing asinreference[15]whilefortheexchangeenergyweneedto the edge states, distinguishing the differentroles in terms of sum two body exchange integrals. It will be useful to write intra-edgeand inter-edgeinteraction manifested respectively itasanintegralofak-dependentfunctiondefiningimplicitly inthediagonalandoffdiagonalmatrixelements,representing eX(k) respectivelythedirectexchangeenergygivingrisetothespin polarization and the tunneling between both sublattices that E = 1o(cid:229) ccK = dke (k) (20) mix states localized at different edges. Further insight was X ij X −2 i,j ZBZ gained studying the properties of localization of edge states alongthedirectionoftheribbonfindingforthosestatessitting where K is the standard definition of exchange integral as ontheedgeatomsaratherlongrangedenvelopingfunctionin ij canbefoundinreference[61]. Thelabelsi, jrepresentoccu- the direction of periodicity, a fact that would make possible pied single particle states including the k quantum numbers, even for very short ranged interaction terms to connect with 6 tothoseobtainedbymorelocalprescriptionslikeLDA/GGA ) ∆EtHotF functionals.7 4 V ∆EHub, U = 2eV e tot m ∆EHub, U = 5.3eV ( tot VII. ACKNOWLEDGMENT. ) W 2 The author gratefully acknowledges valuable discussions ( ot with T. Pereg-Barneaand A. H. MacDonald. Financial sup- Et port was received from Welch Foundation grant TBF1473, ∆ NRI-SWAN, DOE grant Division of Materials Sciences and 0 EngineeringDE-FG03-02ER45958. 20 40 60 80 100 120 W (˚A) FIG.5: (Coloronline)Totalenergydifferenceperedgecarbonatom asafunctionofribbonwidthshowingaW 2 decaybehavior. The − fittingcurves inunitsof eV versus A˚ are6/(W2+300) forD EHF, tot 1/(W2+50)forD EHubwithU=2eV and2.6/(W2 100)forU= tot − 5.3eV. thewavefunctionscenteredseverallatticeconstantsawayin thedirectionoftheribbon.Finallyweanalyzedtheimpactof non-localinteractionin the energeticsofinter-edgecoupling largelyresponsiblefortheantiferromagneticspinpolarization ofthesystem. Inlightofourstudieswehavebeenabletounderstandbet- ter why the Hubbard model based on a strictly short ranged onsite interaction has turned out to give results consistent to solutionsfoundinmoreelaboratestudies. Themainreasons would be on the one hand that for edge states the inter-edge tunnelingnotcapturedbytheHubbardmodelisrelativelyless importantwith respectto the intra-edgespin splittingcontri- butions whose functional form in k-space is accurately cap- turedbyanonsiteinteraction. Ontheotherhand,thespread- ing of the edge state wave functionsalong the ribbonallows edgestates centeredat differentatomicsites to connecteach othereven forstrictly shortrangedonsite interactions. Edge widthdependingscalingofbandgapsandenergydifferences ofdifferentspinpolarizedstatesdoalsofollowasimilarlaw ofW 1 andW 2 respectivelyasfoundintheHubbardmodel − − sincethewidthdependenceofthosequantitiesaredictatedby the wide ribbon asymptotic behavior of the edge state wave functions.15Eventhoughtheabovementionedqualitativefea- turesremainthe same bothfornon-localand localexchange describedbytheHFandHubbardmodelswehavealsoshown that the discrepanciesin the total energydifferencesand the exchangepotentialsoutsidetheedgestatesregionoftheBril- louinzonecannotbemodeledaccuratelywitharenormalized effective onsite interaction term. This effect can have a rel- evantinfluence in calculating the the spin stiffness12,16 or in thebandstructureofthesystemwhenitisshiftedawayfrom theneutralitypoint.20,21Theanalysiswecarriedoutillustrates theroleofnon-localexchangeinalteringthebanddispersion andband-gapsize duetospinpolarizededgestates, explain- ing the relative enhancementof band gaps in the results ob- tained with non-local B3LYP9 type functionals with respect 7 AppendixI.Hartree-Fockformulationinthetwobandanalysis wherey kl (r)aretheBlochstatewavefunctions. The matrix elements in the Left-Right (LR) basis can be ThefullHartree-FockHamiltoniancanbereducedtoatwo writteninthefollowingway dimensionalmatrixrepresentationforeachspin. Wewillrep- resentthisHamiltonianmatrixinasuitablychosenbasisfunc- ttieoxnt.,GfoirveenxathmepbleastihseofLBRlobcahsifsuwncetihoanvse defined in the main hkL|VH|kLi=(cid:229)l |Lkl |2k(cid:229) l NKUHll ′hnk′l ′l ′i (26) ′ ′ hr|kl i=y kl (r)= √1N (cid:229) eik(Ri+tl)f (r−Ri−tl)h s whereN isthetotalnumberofkpointsusedinthesum. The K i K (21) densitymatrixoperatoris definedas nll =cl† cl wherethe whereh s representsthespinor,tlrepresentsthedisplacement labell representsthequantumnumbers′thatla′belsthebasis vectorforsublatticesintheunitcellthatcanbelabeledwith set. The explicit forms of the amplitude coefficients L in kl l, andNK isthetotalnumberofk-points,orequivalently,the thetight-bindingmodelcanbefoundintheappendixII.The number of unit cells in the system repeated in the periodic diagonalnl nll issimplytheoccupationinthestatel and direction. Thelabell =(l,s )representsboththelatticesite implicitlyim≡pliesasuminthekpoints labell andthespins . Inthisbasisthegeneralexpressionof theHamiltonianis VHF = k(cid:229)ll UHll ′"(cid:229)k c†k′l ′ck′l ′ #c†kl ckl nll ′ = N1K (cid:229) k c†kl ckl . (27) ′ ′ D E − k(cid:229)ll UXll ′ k′−k c†k′l ′ck′l c†kl ckl ′ (22) We get a similar expression for the other element of the ′ ′ (cid:0) (cid:1)D E diagonal where we only need to change the L label into R. where TheHartreetermaveragestozerofortheoffdiagonalmatrix element.Inaneutralribbonthepresenceofthepositiveback- UHll ′ = kl k′l ′|V|kl k′l ′ (23) groundchargeneutralizestheelectrostaticHartree-potential = (cid:10) dr1dr2 y kl (r1)2(cid:11)V(r1,r2) y kl (r2)2(r2) | | | ′ ′ | Z V (l)+V (l)=0 (28) ext H and e e UXll ′(q) = kl k′l ′|V|k′l kl ′ (24) sowecanfocusourattentionintheexchangecontributionof theinteraction. = (cid:10) dr1dr2y k∗l (r1)y k(cid:11)′l (r1) (25) Now we show the matrix elements of the Fock term. For Z × V(r1,r2)y k∗′l (r2)y kl ′(r2) thediagonalandoffdiagonalelementswehaverespectively hkL|VF|kLi = hkL|−k(cid:229)ll UXll ′ k′−k c†k′l ′ck′l c†kl ckl ′|kLi=−l(cid:229)l L∗kl Lkl ′(cid:229)k UXll ′ k′−k hnk′ll ′i (29) ′ ′ (cid:0) (cid:1)D E ′ ′ (cid:0) (cid:1) hkL|VF|kRi = hkL|−k(cid:229)ll UXll ′ k′−k c†k′l ′ck′l c†kl ckl ′|kRi=−l(cid:229)l L∗kl Rkl ′(cid:229)k UXll ′ k′−k hnk′ll ′i (30) ′ ′ (cid:0) (cid:1)D E ′ ′ (cid:0) (cid:1) differingonly in the expansioncoefficientsof the two-bands ThekernelsintheHartreeandFocktermsofequation(22), states. assumings =s anddroppingthespinpart,canbewrittenas ′ UHll ′ = N12 (cid:229)NK dr1dr2|f (r1−Ri−tl)|2v(r1−r2) f (r2−Rj−tl′) 2≃ N12 (cid:229)NKVeff Llilj′ (31) UXll ′(q) = N1K2 (cid:229)Ni,KjZei(k′−k)(cid:16)Ri′+tl−(cid:16)Rj′+tl′(cid:17)(cid:17)Veff Ri′+tl−(cid:12)(cid:12)Rj′−tl′ ≃ N12(cid:12)(cid:12)(cid:229)NKei(kK′−ik,)jLlilj′ V(cid:16)e(cid:12)(cid:12)(cid:12)ff L(cid:12)(cid:12)(cid:12)(cid:17)lilj′ (32) K i j K ij ′ ′ (cid:0)(cid:12)(cid:12) (cid:12)(cid:12)(cid:1) (cid:16)(cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12)(cid:17) 8 where we have defined Llilj′ = Ri−Rj+tl −tl′ and the determinant.Thisleadstoarelationbetweenzandtheenergy E: CoulombintegralsVeff Llilj′ canbeapproximatedthrough theexpressioninequati(cid:16)o(cid:12)n(7)(cid:12).(cid:17) E z+2cos(k/2) The Hartree-Fockequ(cid:12)(cid:12)ation(cid:12)(cid:12)sreduce to the Hubbardmodel (cid:12) 1/z+2−cos(k/2) E !(cid:12)=0 whentheinteractionsarereducedtoonsiterepulsionandthe (cid:12) − (cid:12) (cid:12) (cid:12) expressionssimplifyconsiderably. (cid:12)(cid:12) E2=1+(z+1/z)Q(cid:12)(cid:12)+Q2 (41) hkL|VH|kLi = (cid:229) |Lkl|2U(hnls i+hnls i) (33) Notethatforasolutionz,1/zisalsoasolution.Wecanthere- l fore,writetwo(unnormalized)solutions: kL VF kL = U(cid:229) Lkl 2 nls . (34) h | | i − | | h i l 1+Q Y (z,E,k)= z zn (42) 1 Addingbothtermsweobtainforthediagonalandoffdiagonal E ! terms z+Q hkL|VHF|kLi = U(cid:229) |Lkl|2hnls i (35) Y 2(z,E,k)= E !z−n l (cid:229) hL|VF|Ri = −U L∗klRklhnls i. (36) Inordertocompleteourdescriptionofwavefunctionswe l need one more condition on E or z. This condition comes from the edges of the ribbon. For pedagogicalpurposes, let Thelastoffdiagonaltermreducestozerobecausethecoeffi- usbrieflymentionthe case ofinfinite andsemi-infinite sam- cientsL andR havezerooverlap. kl kl ples. In an infinite system we require that the wave func- tions stay finite in the limits n ¥ . This leads to z =1 AppendixII.Analyticresolutionofthetight-binding whichisobeyedbyBlochwave→szn±=eipnwithareal p|b|eing LR-functions themomentumalongthey-direction. Inasemi-infinitesheet we require only that the wave function be finite at n +¥ → and a vanishing amplitude on the one edge. In order to Inthisappendixsectionwedescribetheexacttightbinding satisfy the vanishing amplitude condition we need to com- wavefunctionsforthezigzagribbonedgestates. Weuseperi- bine the two solutionsin Eq.( 42) and in order to satisfy the odicboundaryconditionsinthex-directionandclosedbound- condition at infinity we require z 1. Bloch waves (with ary conditions in the y direction. Taking advantage of the | |≤ z =1) can satisfy both conditions thus the bulk states are translationalsymmetrywemayFouriertransformtheHamil- | | rearranged to accommodate the edge. In addition, new real tonianandsolveaonedimensionalproblemwithk k asa x ≡ solutionswith z <1mayalsosatisfytheboundarycondition parameter. Thisderivationis similar to that of Malyshevaet | | al.60withsomeadditionaldetails. ontheedgewithE =0. Thisgiveseitherz= 2cos(k/2)or − 1/z= 2cos(k/2)whenonlyoneofthesesolutionsisphysi- Thek-dependentonedimensionalHamiltonianofgraphene − calanddecaysawayfromtheedge. Thevanishingamplitude isgivenby: conditionistriviallysatisfied bysettingallA (orB)site am- H = Y †H Y (37) plitudes to zero. This gives the flat band states at momenta k k k k k whichsatisfy cos(k/2) <1/2. Thisconditiondefinesthe 0 R+Q regionbetweent|heK and|K points. H = (38) ′ k R†+Q 0 ! Inthecaseofaribbonwithtwoedgeswerequireavanish- ing amplitudeon bothsides of the ribbon. Thistranslates to whereQ=2cos(k/2)andthevectorsY have2N coordinate, Y B(0)=Y A(N+1)=0whereN isthenumberofunitcells k k the N top coordinates are the A sublattice sites along the y- intheydirection(i.e.,thenumberofchainpairs,asdefinedin direction and the bottom N are the B sublattice sites. The themain text). AssumingthatY (n)is a linearcombination k operatorR† is a N N matrixwhich representsa translation ofthesolutionsinEq.(42)weobtaintherelation: × byoneunitcellinthepositivey-directionandRtranslatesin theoppositedirection.Employingtheansatz: Q= zN−z−N . (43) − zN+1 z (N+1) y − − Y k(n)= y A zn (39) whichdeterminesallthepossiblesolutionsofthetightbinding B! modelontheribbon. Eq.(43) hasN 2Blochlikesolutions and2real(edgelike)solutions60.For−realnumbersznproduce wemayreduceSchro¨dinger’sequationto: exponentiallydecayingsolutionswhicharelocalizedtooneof (1/z+Q)y =Ey theedges. Similarlytothecaseofthesemi-infinitegraphene B A (z+Q)y =Ey (40) sheet,thereal,edge-localizedsolutionsarefoundinaregion A B between the valleys. The term valleys usually refers to the In order to solve these equations with a non-trivial vector nodesintheBrillouinzonewheretheenergyvanishes. Here, (y ,y )werequirethatthematrixofcoefficientshaveazero we can only see their projection on the k axis at k = 2p . A B ±3a 9 However, due to the finite size of the ribbon the edge states Togainsomeintuitionaboutinteractingedgestateswepre- regimeissmallerandextendsfrom2p /3a+1/Wto4p /3a fertoworkwithedgelocalizedstatesY andY . Theseare L R 1/W aswillbeshownshortly. − constructedbycombiningtheY . Sincetheparametersz,Q In order to find the amplitudes of the left and right wave anda onlydependontheabsolu±tevalueofE weget: functions all we need to do is combine the two solutions in Eq.(42) in a way that the boundary conditions are satisfied. 1 1 1 Wemaychoosetosatisfytheboundaryconditionprovidedby Y L = (Y ++Y )=√2a (( +Q)zn (z+Q)z−n) √2 − z − 0! oneoftheedgeswhiletheotherconditionwouldbeautomati- callysatisfiedbythecorrectchoiceofz(asolutiontoEq.(43)). 1 0 Y = (Y Y )=√2E a (zn z n) (46) Thisgives: R √2 +− − | | − − 1! Y (E,k,n)=a 1z +Q zn z+Q z n (44) Note that the left and right wave functions are localized on − ± E ! − E ! ! onesublattice,determinedbytheboundaryconditions. ±| | ±| | Intheabovediscussionweleftzasaparameter. However, andtheparametera isgivenbythenormalization: thevalueofzisdefinedbythesolutionstoEq.43,whichun- fortunatelydoesnotprovideaclosedform. Letusdefinethe |a |−2 = (cid:229)N [((1z +Q)zn−(z+Q)z−n)2+E2(zn−z−n)2] binevreerwseriltotceanliazsationlength,l suchthatz=exp(l ). Eq.43can n=1 (1 z2N)(1+z2(N+1)) sinh(Nl ) = 2(1 z2) − (45) Q= . (47) − (1 z2(N+1))2 − sinh((N+1)l ) − Pleasenotethatzisassumedreal(butmaybenegative). Itis Thentheenergyofthislocalizedsolutioncanbesimplifiedby worthmentioningthatthelowerenergysolution(with E ) substitutingEq.(47)intoEq.(41): −| | isantisymmetricabouttheribboncenterwhilethehigheren- ergy solution is symmetric. For this (anti)symmetry to hold sinh(l ) E= . (48) we require Y A(n)= Y B(N+1 n) which is satisfied by ±sinh((N+1)l ) Y . ± − ± Electronicaddress:[email protected] 19 S. Dutta, S. Lakshmi and S. K. Pati, Phys. Rev. B 77, 073412 ∗ 1 M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe, J. Phys. (2008). Soc.Jpn.65,1920(1996). 20 J.JungandA.H.MacDonald,Phys.Rev.B79,235433(2009). 2 K.Nakada,M.Fujita,G.Dresselhaus, M.S.Dresselhaus, Phys. 21 J.JungandA.H.MacDonald,Phys.Rev.B81,195408(2010). Rev.B54,17954(1996). 22 Sudipta Dutta and Swapan K. Pati, J. Mater. Chem., 20, 8207 3 K.Wakabayashi,M.Fujita,H.Ajiki,M.Sigrist,Phys.Rev.B59, (2010). 8271(1999). 23 B.Xu,J.Yin,H.Weng,Y.Xia,X.Wan,andZ.Liu,Phys.Rev.B 4 M.Ezawa,Phys.Rev.B73,045432(2006). 81,205419(2010). 5 L.BreyandH.A.Fertig,Phys.Rev.B73,235411(2006). 24 R.Qin,J.Lu,L.Lai,J.Zhou,H.Li,Q.Liu,G.Luo,L.Zhao,Z. 6 T.Hikiharaetal.,Phys.Rev.B68,035432(2003). Gao,W.N.Mei,andG.Li,Phys.Rev.B81,233403(2010). 7 Y.-W. Son, Marvin L. Cohen, and Steven G. Louie, Phys. Rev. 25 J.Kuntsmann,C.Ozdogan,A.Quandt,andH.Feshke,Phys.Rev. Lett.97,216803(2006). B83,045414(2011). 8 Y.-W.Son,MarvinL.Cohen, andStevenG.Louie,Nature444, 26 Y.Niimi,T.Matsui,H.Kambara,K.Tagami,M.Tsukada,andH. 347(2006). Fukuyama,Phys.Rev.B73,085421(2006). 9 L. Pisani, J. A. Chan, B. Montanari, and N. M. Harrison Phys. 27 Y.Kobayashi,K.-I.Fukui,andT.Enoki,andK.Kusakabe,Phys. Rev.B75,064418(2007). Rev.B73,125415(2006). 10 H.Lee,Y.-W.Son,N.Park,S.Han,andJ.Yu,Phys.Rev.B72, 28 M.Y.Han,BarbarosO¨zyilmaz,Y.Zhang,andP.Kim,Phys.Rev. 174431(2005). Lett.98,206805(2007). 11 K.KusakabeandM.Maruyama,Phys.Rev.B67,092406(2003). 29 X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 319, 1229 12 O.Yazyev,M.I.KatsnelsonPhys.Rev.Lett.100,047209(2008). (2008). 13 J.Ferna´ndez-Rossier,Phys.Rev.B77,075430(2008). 30 S.S.Datta,D.R.Strachan,S.M.KhamisandA.T.C.Johnson, 14 W.Y.KimandK.S.Kim,NatureNanotechnology3,408(2008). NanoLett.81912(2008). 15 J.Jung.T.Pereg-Barnea,A.H.MacDonald,Phys.Rev.Lett.102, 31 L. C. Campos, V. R. Manfrinato, J. D. Sanchez-Yamagishi, J. 227205(2009). Kong,P.Jarillo-Herrero,Nanoletters.9,2600(2009). 16 J.-W.RhimandK.Moon,Phys.Rev.B80,155441(2009). 32 L.Ci,L.Song,D.Jariwala,etal.Adv.Mat.21,4487(2009). 17 D.Gunlycke, D.A.Areshkin, L.Junwen, J.W.Mintmire,C.T. 33 X. Jia, M. Hofmann, V. Meunier, B. G. Sumpter, J. Campos- White,NanoLett.7,3608(2007);D.Gunlycke,H.M.Lawler,C. Delgado, J.M.Romo-Herrera, H.Son,Y.-P.Hsieh,A.Reina,J. T.White,Phys.Rev.B.75,29-33(2007). Kong,M.Terrones,M.S.Dresselhaus,Science323,1701(2009). 18 M.Zarea,C.BusserandN.Sandler,Phys.Rev.Lett.101,196804 34 C.O¨.Girit,J,C.Meyer,R.Erni,M.D.Rossell,C.Kisielowski, (2008). L.Yang,C.-H.Park,M.F.Crommie,M.L.Cohen,S.G.Louie, 10 andA.Zettl,Science323,5922(2009). (2008). 35 A.Chuvilin,J.C.Meyer,G.Algara-Siller,U.Kaiser,NewJournal 46 Z. Qiao, S. A. Yang, W. Feng, W.-K. Tse, J. Ding, Y. Yao, J. ofPhysics11,083019(2009). Wang,andQianNiu,Phys.Rev.B82,161414(R)(2010). 36 M.Ye,Y.T.Cui,Y.Nishimura,Y.Yamada,S.Qiao,A.Kimura, 47 F. Zhang, J. Jung, G. A. Fiete, Q. Niu, A. H. MacDonald, M.Nakatake,H.NamatameandM.Taniguchi,Eur.Phys.J.B75, arXiv:1010.4003(2010). 31(2010). 48 O.V.Yazyev,Rep.Prog.Phys.73,056501(2010). 37 T.Enoki,andK.Takai,SolidStateCommun.149,1144(2009). 49 J. AliceaandM. P.A.Fisher, Phys. Rev. B74, 075422 (2006); 38 V. L. J. Joly, M. Kiguchi, S.-J. Hao, K. Takai, T. Enoki, R. SolidStateComm.143,504(2007). Sumii,K.Amemiya,H.Muramatsu,T.Hayashi,Y.A.Kim,and 50 O. V. Yazyev, M. I. Katsnelson Phys. Rev. Lett. 101, 037203 M.Endo,J.Campos-Delgado, F.Lpez-Uras,A.Botello-Mndez, (2008). H. Terrones, M. Terrones, M. S. Dresselhaus, Phys. Rev. B 81, 51 S. Bhowmick and V. B. Shenoy, J. Chem. Phys. 128, 244717 245428(2010). (2008). 39 C.Tao,L.Jiao,O.V.Yazyev,Y.-C.Chen,J.Feng,X.Zhang,R.B. 52 B. Wunsch, T. Stauber, F.Sols, and F. Guinea, Phys. Rev. Lett. Capaz,J.M.Tour,A.Zettl,S.G.Louie,H.Dai,M.F.Crommie 101,036803(2008). arXiv:1101.1141v1(2010). 53 J.JungandA.H.MacDonald,tobepublished. 40 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. 54 J. Ferna´ndez-Rossier and J. J. Palacios, Phys. Rev. Lett. 99, Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, 177204(2007). Nature438,197(2005). 55 J.J.Palacios,J.Ferna´ndez-Rossier,andL.Brey,Phys.Rev.B77, 41 Y.Zhang,Y.-W.Tan,H.L.Stormer,andP.Kim,Nature438,201 195428(2008). (2005). 56 J.P.PerdewandY.Wang,Phys.Rev.B45,13244(1992). 42 A.H.CastroNeto, F.Guinea, N.M.R.Peres, K.S.Novoselov 57 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009); A. K. Geim 3865(1996). andK.S.Novoselovetal.,NatureMaterials6,183(2007);A.K. 58 D. M. Ceperley and B. J. Alder, Phys. Rev. Lett.45, 566 - 569 GeimandA.H.MacDonald,PhysicsToday60,35(2007). (1980). 43 Coeyetal.Nature420,158(2002);ElGoresyetal.,Science161, 59 M.Hatanaka,Chem.Phys.Lett.484,276,(2010). 363(1968); Smithetal,Science216, 984(1982); Lietal.,Ap- 60 L. Malysheva and A. Onipko, Phys. Rev. Lett. 100, 186806 pliedPhys.Lett.90,232507(2007);P.M.Allemand,Science253, (2008);arXiv:0802.1385v1(2008). 301(1991);Esquinazietal.,Phys.Rev.Lett.91,227201(2003); 61 A. Szabo and N. Ostlund, ‘Modern Quantum Chemistry: Intro- Barzola-Quiquiaetal.Phys.Rev. B76, 161403 (2007); Ohldag ductiontoAdvancedElectronicStructureTheory’,Dover(1996). et al, Phys. Rev. Lett. 98, 187204 (2007); Cervenka et al., Na- 62 P.-O.Lowdin,Phys.Rev.97,1490(1955). turePhysics5,840(2009);T.MakarovaandF.Palacio,‘Carbon 63 B. Wunsch, T. Stauber, F.Sols, and F. Guinea, Phys. Rev. Lett. BasedMagnetism:AnOverviewoftheMagnetismofMetalFree 101,036803(2008). Carbon-basedCompoundsandMaterials’,Elsevier(2006). 64 M.ZareaandN.Sandler,Phys.Rev.Lett.99256804(2007). 44 C.L.KaneandE.J.Mele,Phys.Rev.Lett.95,226801(2005). 65 R.EggerandA.Gogolin,Phys.Rev.Lett.79,5082(1997). 45 M.Arikawa,Y.Hatsugai,andH.Aoki,Phys.Rev.B78,205401