ebook img

Non-Linear Finite Element Analysis in Structural Mechanics PDF

367 Pages·2015·10.904 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Non-Linear Finite Element Analysis in Structural Mechanics

Wilhelm Rust Non-Linear Finite Element Analysis in Structural Mechanics Non-Linear Finite Element Analysis in Structural Mechanics . Wilhelm Rust Non-Linear Finite Element Analysis in Structural Mechanics WilhelmRust FacultyII,Dep.ofMechanicalEngineering UniversityofAppliedSciencesandArts Hannover Germany ISBN978-3-319-13379-9 ISBN978-3-319-13380-5(eBook) DOI10.1007/978-3-319-13380-5 SpringerChamHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2015933153 ©SpringerInternationalPublishingSwitzerland2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerpts inconnectionwithreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeing enteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework.Duplication ofthispublicationorpartsthereofispermittedonlyundertheprovisionsoftheCopyrightLawofthe Publisher’s location, in its current version, and permission for use must always be obtained from Springer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter. ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Thistextbookintroducesintothetheoryofnon-linearFiniteElementMethods(FEM) in structural mechanics, divided into the main parts on geometric non-linearity, non-linear material behaviour and contact. While it is not possible to describe the total FEM of linear mechanics in one book, this is even more the case for the non-linearFEM,as“non-linear”isnotaspecialpropertybutmeansthatthelimiting assumptions, which for good reason dominate undergraduate studies in Technical Mechanics,aremissing.Thisbookshouldpreparethereadertoworkwithadvanced booksandpapers. Theformulaeusedareintentionallyderivedindetailinordertoenablethereader totransferthe described relationsintocomputerprogramsandtocreateequations forsimilarphysicaleffects. ThebookaddressesfirstandforemoststudentswhowanttoattainMaster’slevel, but FEM users should get useful insights as well. In the linear FEM, provided the systems are sufficiently constrained, a result is always obtained (the correctness/ accuracyisnottobediscussedhere);however,theuser,especiallythenoviceone,of non-linearanalysiswillendupinnon-convergenceandthuswithoutequilibriumina numberofattempts.Inthissituation,itisgoodtoknowthepotentialcauses.Thiswill help to decide whether and how convergence can be achieved by changes to the settings. Here, the chapters on stability and on convergence in contact analysis are recommended.Itshouldbenotedthatthesuccessofanon-linearanalysisdependson realisticinputdata,asafailureofthesystemwillnotonlyappearinthefinalresults (when comparing them with strengths) but will influence convergence at anearlier stage. For the user there is a further necessity—maybe even more important—of the theoreticalbackground:theFEMprogramsonthemarketoffernumerousoptionsand settings to choose which usually are described for a user with knowledge on how FiniteElementsareformulated.Inthisbook,itisassumedthatthereaderknowshow this is done for linear FEM. For that subject, there are numerous books and often lecturesinengineeringcourses. v vi Preface Thesampleresultsinthisbook,ifnotfromtablecalculation,aremostlyobtained with ANSYS, but other well-known FE codes use similar concepts such that the findingscanbetransferred. Thistextbookdescribestheknowledgetheauthorobtainedovermanyyears,the majority of them as a practical engineer. Most of it is common among experts. Therefore, the bookdoesnot listthe originofall these theoriesand algorithms but only gives advanced references. Since the book is derived from scripts of lectures, generalsolutionmethodsareworkedoutinfullwhentherelatedproblemoccursfor thefirsttime. Thisworkisbasedonscriptsoflecturesbeinggivenbytheauthorintheframeof Master’scoursesatUniversitiesofAppliedSciencesofHanover(wheretheauthor is affiliated) and Lausitz as well as at the European School of Computer Aided EngineeringTechnology(ESoCAET).Theroots,however,areteachinganddevel- opment duties of the author during his long-lasting employment at CADFEM GmbH. The author would particularly like to thank its founder, Dr.-Ing. Gu¨nter Mu¨ller, for the opportunity to learn during everyday work as well as for his uncomplicatedhandlingofpossiblecopyrightquestions. TheauthorfirstearnedhisstripesinthefieldofFiniteElements—whichalready included a certain amount of non-linearity—at “Institut fu¨r Baumechanik und NumerischeMechanik”(Institutefor Structural and Numerical Mechanics) ofUni- versityofHanoverundertheguidanceofProf.Dr.-Ing.ErwinStein,whoawakened theauthor’senthusiasmfirstformechanics,thenforFiniteElementsandtowhomthe authorgiveshisheartfeltthanks. AGerman-languageversionofthisbookwasfirstpublishedin2009. Langenhagen,Germany WilhelmRust Spring2014 Notation Symbolsofformulaeareexplainedatleastattheirfirstappearanceinthetext. M Matricesarewritteninboldfaceandwithcapitalletters v Vectors,rowandcolumnmatricesinboldfaceandlowercaseletters, exceptacertainquantityiscommonlynotedinadifferentway 0 Meansazerovectororazeromatrix I Aunitmatrix(identity) Δ(...) Denotesanincrement a˜ atildeoveravariable—anapproximation a¯ abar—agivenvalue a^ ahat(circumflex)—avalueassociatedtoaFiniteElementnode a* astar—amodified,improvedvalueoronebeingusedinsteadof theoriginalone FE FiniteElements FEM Finite-ElementMethod CoS Coordinatesystem eq. Equation s.o.eqs. Systemofequations deq. Differentialequation r.h.s. Righthandside w.r.t. Withrespectto resp. Respectively 1d,2d,3d One-,two-,three-dimensionalresp.theone-,two-, three-dimensionalspace [...] Pointstothereferencelist vii ThiSisaFMBlankPage Contents 1 BasicMathematicalMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 IndexNotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 DerivativeswithrespecttoaVector. . . . . . . . . . . . . . . . . . . . 2 1.3 Newton-RaphsonMethod. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 OtherSolutionMethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 DerivativesofImplicitFunctions. . . . . . . . . . . . . . . . . . . . . . . 7 1.6 Step-SizeControl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.7 LineSearch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.8 ConvergenceCriteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 PartI GeometricNonlinearities 2 GeometricallyNonlinearBehaviour. . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 FundamentalTermsofGeometricNonlinearities. . . . . . . . . . . 17 2.2 TheoryofSecondOrder,EquilibriumintheDeformed System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 MotivationandFE-Formulation. . . . . . . . . . . . . . . . . 17 2.2.2 WhyTheoryofSecondOrder?. . . . . . . . . . . . . . . . . . 20 2.2.3 LinearBuckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.4 CorrectStress-StiffnessMatrixforthe Bernoulli-Beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3 LargeRotationsI:StrainMeasure. . . . . . . . . . . . . . . . . . . . . . 30 2.3.1 KinematicEffects. . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.2 AppropriateStrainMeasure:Green-LagrangeStrain. . . 31 2.3.3 ThePrincipleofVirtualWorkforGeometrically NonlinearProblems. . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.3.4 SolutionoftheNonlinearEquationbythe Newton-RaphsonMethod. . . . . . . . . . . . . . . . . . . . . . 36 2.3.5 TestProblemTwo-LeggedTruss. . . . . . . . . . . . . . . . 40 2.3.6 NotationinContinuumMechanicalSymbols. . . . . . . . 43 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.