EAA series - Textbook Editors Ch.Hipp M. Koller A.Pelsser E.Pitacco D.Filipovic(Co-Chair) U.Orbanz(Co-Chair) EAA series is successor of the EAA Lecture Notes and supported by the European Actuarial Academy (EAA GmbH), founded on the 29 August, 2005 in Cologne (Germany) by the Actuarial Associations of Austria, Germany, the Netherlands and Switzerland. EAA offers actuarial education including examination, permanent education for certifiedactuariesandconsultingonactuarialeducation. actuarial-academy.com EAA series/EAA Lecture Notes Wüthrich,M.V.;Bühlmann,H.;Furrer,H.Market-ConsistentActuarialValuation2007 Lütkebohmert,E.ConcentrationRiskinCreditPortfolios2009 Sundt,B.;Vernic,R.RecursionsforConvolutionsandCompoundDistributions withInsuranceApplications2009 Ohlsson,E.;Johansson,B.Non-LifeInsurancePricingwithGeneralizedLinear Models2010 Esbjörn Ohlsson (cid:2) Björn Johansson Non-Life Insurance Pricing with Generalized Linear Models Dr.EsbjörnOhlsson Dr.BjörnJohansson LänsförsäkringarAlliance LänsförsäkringarAlliance 10650Stockholm 10650Stockholm Sweden Sweden [email protected] ISSN1869-6929 e-ISSN1869-6937 ISBN978-3-642-10790-0 e-ISBN978-3-642-10791-7 DOI10.1007/978-3-642-10791-7 SpringerHeidelbergDordrechtLondonNewYork LibraryofCongressControlNumber:2010923536 MathematicsSubjectClassification(2000):91Gxx,62Jxx,97M30 ©Springer-VerlagBerlinHeidelberg2010 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Coverdesign:WMXDesignGmbH,Heidelberg Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Toour families Preface Non-lifeinsurancepricingistheartofsettingthepriceofaninsurancepolicy,tak- ingintoconsiderationvariouspropertiesoftheinsuredobjectandthepolicyholder. The main source on which to base the decision is the insurance company’s own historicaldataonpoliciesandclaims,sometimessupplementedwithdatafromex- ternalsources.Inatariffanalysis,theactuaryusesthisdatatofindamodelwhich describes how the claim cost of an insurance policy depends on a number of ex- planatory variables. In the 1990’s British actuaries introduced generalized linear models (GLMs) as a tool for tariff analysis and this has now become the standard approachinmanycountries. ThisbookfocusesonmethodsbasedonGLMsthatwehavefoundusefulinour actuarialpractice,andintendtoprovideasetoftoolsthatfillsmostneedsforatariff analysis.Successiveversionsofthetexthavebeenthebasisforacourseinnon-life insurance mathematics at Stockholm University since 2001. This course is part of thecurriculumsetupbytheSwedishActuarialSocietytomeettheEuropeanCore Syllabusforactuarialeducation. The aim is to present the basic theory of GLMs in a tariff analysis setting, and also to give some useful extensions of standard GLM theory that are not in com- monuse,viz.theincorporationofrandomeffectsandtheuseofsmoothingsplines. Randomeffectmodelscanbeusedtogreatadvantageforhandlingcategoricalvari- ableswithalargenumberofpossiblelevels,andthereisaninterestingconnection withthetraditionalactuarialfieldofcredibilitytheorythatwillbedevelopedhere. Smoothingsplinesisapowerfulmethodformodelingtheeffectofcontinuousvari- ables;suchanalysesareoftenpresentedunderthenamegeneralizedadditivemodels (GAMs).WhileGAMshavebeenusedinbiostatisticsforseveralyears,theyhave notyetfoundtheirwayintotheactuarialdomaintoanylargeextent. Thetextisintendedfor practicingactuariesandactuarialstudentswitha back- ground in mathematics and mathematical statistics: proofs are included whenever possible without going into asymptotic theory. The prerequisites are basic univer- sitymathematics—includingagoodknowledgeoflinearalgebraandcalculus—and basicknowledgeofprobabilitytheory,likelihood-basedstatisticalinferenceandre- gressionanalysis.Asecondcourseinprobability,sayatthelevelofGut[Gu95],is useful. vii viii Preface Inordertoprovidestudentswiththepossibilitytoworkwithrealdataofsome complexity,wehavecompiledacollectionofdatasetstobeusedinconnectionwith anumberofcasestudies.ThedatawasprovidedbyLänsförsäkringarAllianceand isavailableatwww.math.su.se/GLMbook. Forworkingthroughthecasestudies,asuitablesoftwareisneeded.InAppendix wehavegivensomehintsonhowtoproceedusingtheSASsystem,sincethisisa standardsoftwareatmanyinsurancecompanies.MatlabandRareotherpossibili- tiesforacoursebasedonthistext.Therearealsosomegoodspecializedsoftware packages for tariff analysis with GLMs on the market, but these are not generally availabletostudents;wealsobelievethathavingtowriteyourownprogramshelps inunderstandingthesubject. Somesectionsthatarenotnecessaryforunderstandingtherestofthetexthave beenindicatedbyastar. We wish to acknowledge the support from Stockholm University, Division of MathematicalStatistics,wherewebothhavebeenseniorlecturersforseveralyears, and the Non-life actuarial group at Länsförsakringar Alliance, were we are now working as actuaries. Special thanks to Professor Rolf Sundberg for providing the justification for the pure premium confidence intervals. Finally, we wish to thank ViktorGrgic´ forvaluablecommentsandhelpwiththegraphics. Stockholm EsbjörnOhlsson BjörnJohansson Contents 1 Non-LifeInsurancePricing . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 RatingFactorsandKeyRatios. . . . . . . . . . . . . . . . . . . . 2 1.2 BasicModelAssumptions . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 MeansandVariances . . . . . . . . . . . . . . . . . . . . 8 1.3 MultiplicativeModels . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.1 TheMethodofMarginalTotals . . . . . . . . . . . . . . . 11 1.3.2 OneFactorataTime? . . . . . . . . . . . . . . . . . . . . 12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 TheBasicsofPricingwithGLMs . . . . . . . . . . . . . . . . . . . . 15 2.1 ExponentialDispersionModels . . . . . . . . . . . . . . . . . . . 16 2.1.1 ProbabilityDistributionoftheClaimFrequency . . . . . . 18 2.1.2 AModelforClaimSeverity . . . . . . . . . . . . . . . . . 20 2.1.3 Cumulant-GeneratingFunction,ExpectationandVariance . 21 2.1.4 TweedieModels . . . . . . . . . . . . . . . . . . . . . . . 24 2.2 TheLinkFunction . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.1 CanonicalLink* . . . . . . . . . . . . . . . . . . . . . . . 29 2.3 ParameterEstimation . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.1 TheMultiplicativePoissonModel. . . . . . . . . . . . . . 30 2.3.2 GeneralResult . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.3 MultiplicativeGammaModelforClaimSeverity . . . . . . 33 2.3.4 ModelingthePurePremium . . . . . . . . . . . . . . . . . 34 2.4 CaseStudy:MotorcycleInsurance . . . . . . . . . . . . . . . . . 35 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3 GLMModelBuilding . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1 HypothesisTestingandEstimationofφ . . . . . . . . . . . . . . . 39 3.1.1 Pearson’sChi-SquareandtheEstimationofφ . . . . . . . 42 3.1.2 TestingHierarchicalModels . . . . . . . . . . . . . . . . . 43 3.2 ConfidenceIntervalsBasedonFisherInformation . . . . . . . . . 44 3.2.1 FisherInformation . . . . . . . . . . . . . . . . . . . . . . 44 3.2.2 ConfidenceIntervals . . . . . . . . . . . . . . . . . . . . . 45 ix x Contents 3.2.3 NumericalEquationSolving* . . . . . . . . . . . . . . . . 49 3.2.4 DotheMLEquationsReallyGiveaMaximum?* . . . . . 50 3.2.5 AsymptoticNormalityoftheMLEstimators* . . . . . . . 51 3.3 Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.4 Overdispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.5 EstimationWithoutDistributionalAssumptions . . . . . . . . . . 58 3.5.1 EstimatingEquations . . . . . . . . . . . . . . . . . . . . 58 3.5.2 TheOverdispersedPoissonModel . . . . . . . . . . . . . 60 3.5.3 DefiningDeviancesfromVarianceFunctions* . . . . . . . 60 3.6 Miscellanea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.6.1 ModelSelection . . . . . . . . . . . . . . . . . . . . . . . 61 3.6.2 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.6.3 Offsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.6.4 PolynomialRegression . . . . . . . . . . . . . . . . . . . 63 3.6.5 LargeClaims. . . . . . . . . . . . . . . . . . . . . . . . . 63 3.6.6 Deductibles* . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.6.7 DeterminingthePremiumLevel. . . . . . . . . . . . . . . 65 3.7 CaseStudy:ModelSelectioninMCInsurance . . . . . . . . . . . 66 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4 Multi-LevelFactorsandCredibilityTheory . . . . . . . . . . . . . . 71 4.1 TheBühlmann-StraubModel . . . . . . . . . . . . . . . . . . . . 74 4.1.1 EstimationofVarianceParameters . . . . . . . . . . . . . 78 4.1.2 ComparisonwithOtherNotation*. . . . . . . . . . . . . . 81 4.2 CredibilityEstimatorsinMultiplicativeModels . . . . . . . . . . 81 4.2.1 EstimationofVarianceParameters . . . . . . . . . . . . . 84 4.2.2 TheBackfittingAlgorithm. . . . . . . . . . . . . . . . . . 84 4.2.3 ApplicationtoCarModelClassification . . . . . . . . . . 86 4.2.4 MorethanOneMLF . . . . . . . . . . . . . . . . . . . . . 87 4.3 ExactCredibility* . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4 HierarchicalCredibilityModels . . . . . . . . . . . . . . . . . . . 90 4.4.1 EstimationofVarianceParameters . . . . . . . . . . . . . 94 4.4.2 CarModelClassification,theHierarchicalCase . . . . . . 95 4.5 CaseStudy:BusInsurance. . . . . . . . . . . . . . . . . . . . . . 96 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5 GeneralizedAdditiveModels . . . . . . . . . . . . . . . . . . . . . . 101 5.1 PenalizedDeviances . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.2 CubicSplines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3 Estimation—OneRatingVariable . . . . . . . . . . . . . . . . . . 108 5.3.1 NormalCase . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.3.2 PoissonCase . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.3.3 GammaCase . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.4 Estimation—SeveralRatingVariables . . . . . . . . . . . . . . . . 114 5.4.1 NormalCase . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.4.2 PoissonCase . . . . . . . . . . . . . . . . . . . . . . . . . 117
Description: