Non-Destructive Testing of the Graphite Core within an Advanced Gas-Cooled Reactor A thesis submitted to The University of Manchester for the degree of Doctor of Engineering in the Faculty of Engineering and Physical Sciences 2014 Adam David Fletcher School of Electrical & Electronic Engineering Contents Contents 2 List of Figures 5 List of Tables 9 List of Abbreviations 10 Abstract 13 Declaration 14 Copyright Statement 15 Acknowledgements 16 1 Introduction 17 1.1 The Engineering Doctorate . . . . . . . . . . . . . . . . . . . . . . 17 1.2 Industrial Background . . . . . . . . . . . . . . . . . . . . . . . . 19 1.2.1 The UK Energy Markets . . . . . . . . . . . . . . . . . . . 19 1.2.2 EDF Energy . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.4.1 Economic . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.4.2 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.4.3 Regulatory . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.4.4 Next Generation Nuclear Plant . . . . . . . . . . . . . . . 32 1.5 Achievements and Publications . . . . . . . . . . . . . . . . . . . 33 1.6 Organisation of the Thesis . . . . . . . . . . . . . . . . . . . . . . 35 2 Nuclear Graphite and the AGR 37 2.1 AGR Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2 CONTENTS CONTENTS 2.1.1 Reactor Core . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2 Nuclear Graphite . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.2.1 Structure and Properties . . . . . . . . . . . . . . . . . . . 40 2.2.2 Production . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.2.3 Gilsocarbon Graphite . . . . . . . . . . . . . . . . . . . . . 43 2.3 Mechanisms of Graphite Degradation . . . . . . . . . . . . . . . . 43 2.3.1 Neutron Bombardment . . . . . . . . . . . . . . . . . . . . 44 2.3.2 Radiolytic Oxidation . . . . . . . . . . . . . . . . . . . . . 46 2.4 AGR Brick Failure . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.5 Core Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.5.1 Channel Bore Measuring/Inspection Unit . . . . . . . . . . 52 2.5.2 Trepanning Tool Unit . . . . . . . . . . . . . . . . . . . . . 54 2.5.3 NICIE Mark I and II . . . . . . . . . . . . . . . . . . . . . 55 2.5.4 PoPECT and PECIT . . . . . . . . . . . . . . . . . . . . . 55 3 Review of MIT and Inductance Spectroscopy 57 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.1 Non-Locality . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.2.2 Non-Linearity . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2.3 Ill-Posedness . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.3 Forward Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.3.1 Definition of the Forward Problem . . . . . . . . . . . . . 68 3.3.2 Solution of the Forward Problem . . . . . . . . . . . . . . 74 3.4 Calibration of the Forward Model . . . . . . . . . . . . . . . . . . 75 3.5 Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.5.1 Calculating the Jacobian . . . . . . . . . . . . . . . . . . . 81 3.5.2 Formulations of the Jacobian . . . . . . . . . . . . . . . . 88 4 Inpsection of AGR Brick Cracking 99 4.1 Historic Development . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.2 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.3 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . 115 4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 122 4.5 Crack Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5 Inverse Problems and Regularisation Methods 140 5.1 Inversion Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.1.1 Gradient Descent and Newton’s Method . . . . . . . . . . 146 5.1.2 Gauss-Newton Method . . . . . . . . . . . . . . . . . . . . 149 5.2 Review of Regularisation . . . . . . . . . . . . . . . . . . . . . . . 154 3 CONTENTS 5.2.1 Theory of Regularisation . . . . . . . . . . . . . . . . . . . 156 5.2.2 Tikhonov Regularisation . . . . . . . . . . . . . . . . . . . 161 5.2.3 Parameter Choice and the L-Curve Method . . . . . . . . 164 5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 6 Conductivity Profiling using Impedance Spectroscopy 174 6.1 Flat Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 6.2 Radial Hole Drilling . . . . . . . . . . . . . . . . . . . . . . . . . . 195 6.2.1 Cylindrical Test Cases from Simulated Data . . . . . . . . 196 6.2.2 Lattice Hole Drilling as an Analogue for Weight-Loss . . . 200 6.2.3 Inversion of Drilled Brick Test Problem . . . . . . . . . . . 205 6.3 Experimental L-Curve . . . . . . . . . . . . . . . . . . . . . . . . 221 6.4 AGR Core Measurements . . . . . . . . . . . . . . . . . . . . . . 226 6.4.1 Model without Methane Holes . . . . . . . . . . . . . . . . 228 6.4.2 Model with Methane Holes . . . . . . . . . . . . . . . . . . 233 7 Conclusions and Future Work 238 7.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 8 References 250 A Analytical Solution to the Axi-Symmetric Problem 260 A.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 260 A.2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 262 A.2.1 Reduction of Order . . . . . . . . . . . . . . . . . . . . . . 264 A.3 Matrix Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 A.4 Physical Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . 267 A.4.1 Fields due to coils of finite cross section . . . . . . . . . . . 269 A.4.2 Induced Voltage . . . . . . . . . . . . . . . . . . . . . . . . 270 A.4.3 Coil Impedance . . . . . . . . . . . . . . . . . . . . . . . . 272 B Description of the Finite Element Model 273 B.1 Geometry Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 B.2 Physics Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 B.3 Meshing Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 B.4 Study Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 C Regularised Gauss-Newton Method 281 4 List of Figures 1.1 An overview of the AGR core safety assessment methodology. . . 27 2.1 The graphite core of two Advanced Gas-Cooled Reactor (AGR) designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2 Brick geometry used in this work of HRA/HYA type. . . . . . . . 40 2.3 Graphite dimensional change with dose. . . . . . . . . . . . . . . 50 2.4 General arrangement of the inspection problem. . . . . . . . . . . 53 3.1 Comsol geometry used in the forward problem. . . . . . . . . . . . 69 3.2 Comsol mesh used in the forward problem. . . . . . . . . . . . . . 70 3.3 Error norm for each coil radius pair (coarse calibration). . . . . . 77 3.4 Error norm for each coil radius pair (fine calibration). . . . . . . . 78 3.5 Impedance components for the best fit excite-receive radius pairs. The two “Best fit” curves represent the minimal error curves for the real and imaginary impedance components (“Best fit 1” and “Best fit 2” respectively. . . . . . . . . . . . . . . . . . . . . . . . 79 3.6 Voltage change with frequency for a range of bulk conductivity changes (method 1). . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.7 Voltage change with ∆σ at each frequency (method 1). . . . . . . 92 3.8 Voltage change with frequency for a range of bulk conductivity changes (method 2). . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.9 Voltage change with ∆σ at each frequency (method 2). . . . . . . 94 3.10 Voltage change with frequency for a range of bulk conductivity changes (method 3). . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.11 Voltage change with ∆σ at each frequency (method 3). . . . . . . 96 4.1 Crack dimensioning terminology. . . . . . . . . . . . . . . . . . . 100 4.2 The geometry used in the finite element modelling. . . . . . . . . 108 4.3 Plan view of an AGR fuel channel brick (Hartlepool/Heysham 1 type). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.4 Simulated phase change for the 120 mm sensor with respect to coil position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5 LIST OF FIGURES LIST OF FIGURES 4.5 Simulated amplitude change for the 120 mm sensor with respect to coil position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.6 Simulated phase and amplitude changes for three subsurface slots. 114 4.7 120 mm sensor specification . . . . . . . . . . . . . . . . . . . . . 117 4.8 120 mm sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.9 Prototype Eddy Current Inspection tool (PECIT) sensor specifi- cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.10 PECIT sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.11 Jig used to position the sensors. . . . . . . . . . . . . . . . . . . . 121 4.12 Phase change measured for the 120 mm sensor with respect to coil position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.13 Phase change measured for the PECIT sensor with respect to coil position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.14 Amplitude change measured for the 120 mm sensor with respect to coil position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.15 Amplitude change measured for the PECIT sensor with respect to coil position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.16 Maximum phase changes measured for the two sensors used with respect to the measured slot size. . . . . . . . . . . . . . . . . . . 129 4.17 Intersection of the slot and methane hole. . . . . . . . . . . . . . . 130 4.18 The phase change for a slot of undetermined (30 mm), 120 mm sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 4.19 The phase change for a slot of undetermined size (30 mm), PECIT sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 4.20 The phase change for a slot of undetermined size (50 mm), 120 mm sesnor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 4.21 The phase change for a slot of undetermined size (50 mm), PECIT sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.1 A typical L-curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 6.1 Method used to validate the inversion methodology. . . . . . . . . 175 6.2 Inverted profiles for profile 1. . . . . . . . . . . . . . . . . . . . . . 181 6.3 Convergence parameters for profile 1. . . . . . . . . . . . . . . . . 182 6.4 Inverted profiles for profile 2. . . . . . . . . . . . . . . . . . . . . . 183 6.5 Convergence parameters for profile 2. . . . . . . . . . . . . . . . . 184 6.6 Inverted profiles for profile 3. . . . . . . . . . . . . . . . . . . . . . 185 6.7 Convergence parameters for profile 3. . . . . . . . . . . . . . . . . 186 6.8 Inverted profiles for profile 4. . . . . . . . . . . . . . . . . . . . . . 187 6.9 Convergence parameters for profile 4. . . . . . . . . . . . . . . . . 188 6.10 Inverted profiles for profile 5. . . . . . . . . . . . . . . . . . . . . . 189 6 LIST OF FIGURES LIST OF FIGURES 6.11 Convergence parameters for profile 5. . . . . . . . . . . . . . . . . 190 6.12 Cylindrical brick with lattice of radially drilled holes. . . . . . . . 196 6.13 Inversion results for test case 1 (using simulated forward data). . . 198 6.14 Inversion results for test case 2 (using simulated forward data). . . 199 6.15 Finite Element (FE) models used to test the suitability of hole drilling as an analogue for weight-loss. . . . . . . . . . . . . . . . 202 6.16 Calculatedimpedancefortheinnerholelattice(solidline)together withtheimpedancesobtainedfortherangeofvariableconductivity models (dashed lines). . . . . . . . . . . . . . . . . . . . . . . . . 203 6.17 Calculatedimpedancefortheouterholelattice(solidline)together withtheimpedancesobtainedfortherangeofvariableconductivity models (dashed lines). . . . . . . . . . . . . . . . . . . . . . . . . 204 6.18 Error norm for drilled lattice calibration. . . . . . . . . . . . . . . 204 6.19 Inversion results for a graphite brick with a uniform conductivity profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 6.20 Inversion results for a graphite brick with a uniform conductivity profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 6.21 Inversion results for a graphite brick with a uniform conductivity profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 6.22 Inversion results for a graphite brick with a uniform conductivity profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 6.23 Inversion results for a graphite brick with a lattice of radial holes. 212 6.24 Inversion results for a graphite brick with a lattice of radial holes. 213 6.25 Inversion results for a graphite brick with a lattice of radial holes 214 6.26 Inversion results for a graphite brick with a lattice of radial holes. 215 6.27 Inversion results for a graphite brick with a lattice of radial holes. 216 6.28 Comparison of the converged profiles for two reference conductiv- ities applied to the uniform brick. . . . . . . . . . . . . . . . . . . 219 6.29 Comparison of the converged profiles for two reference conductiv- ities and different λ applied to the radially drilled brick. . . . . . 221 0 6.30 An approximation of the L-curve generated from experimental data.222 6.31 Experimental L-curve analysis. . . . . . . . . . . . . . . . . . . . . 223 6.32 Experimental L-curve error data. . . . . . . . . . . . . . . . . . . 224 6.33 Heysham 1 channel plan with inspected channels . . . . . . . . . 228 6.34 Inversion results for location H13-L5-N22 using two calibrated coil sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 6.35 Simulated impedance for a uniform reference profile, using two coil calibrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 6.36 Inversion results for Heysham 1 outage, August 2013, using a model without methane holes. . . . . . . . . . . . . . . . . . . . . 232 6.37 CoilpositionsexaminedduringtheHeysham12013statutaryoutage.234 7 LIST OF FIGURES 6.38 Inversion results for Heysham 1 outage, August 2013, using a model with methane holes. . . . . . . . . . . . . . . . . . . . . . . 235 6.39 Comparison of inverted profiles using the models with and without methane holes with measurements made from trepanned samples. 237 A.1 Generic problem geometry for the 2-dimensional axi-symmetric case.261 A.2 Estimates of the A field based on the analytical formula and the 2D FEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 B.1 The FE model viewed within Comsol. . . . . . . . . . . . . . . . . 274 B.2 Geometry sub-sequence. . . . . . . . . . . . . . . . . . . . . . . . 275 B.3 Physics nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 B.4 Meshing sub-sequence. . . . . . . . . . . . . . . . . . . . . . . . . 278 B.5 Solver sub-sequence. . . . . . . . . . . . . . . . . . . . . . . . . . 279 8 List of Tables 1.1 The UK electricity market as of 2014. . . . . . . . . . . . . . . . . 20 4.1 The meshing parameters used in the FE work. . . . . . . . . . . . 107 4.2 Sensor geometries. . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.3 Estimated through-wall extent of two slots from experimental data.138 6.1 Summary of inversion parameters. . . . . . . . . . . . . . . . . . . 176 6.2 Approximate electrical conductivity of three graphite grades. . . . 179 6.3 Electrical conductivity of two graphite bricks. . . . . . . . . . . . 205 A.1 Boundary condition coefficients. . . . . . . . . . . . . . . . . . . . 264 A.2 Interior and exterior boundary coefficients. . . . . . . . . . . . . . 266 9 List of Abbreviations ABWR Advanced Boiling Water Reactor ACPD Alternating Current Potential Drop AGR Advanced Gas-Cooled Reactor ALARP as low as reasonably practicable BFGSM Broyden-Fletcher-Goldfarb-Shanno Method CAD Computer Aided Design CBIU Channel Bore Inspection Unit CBMU Channel Bore Measurement Unit CCCA core component condition assessment CRT Cathode Ray Tube CT (X-ray) Computed Tomography CTA Collaborative Training Account CTE Coefficient of Thermal Expansion DCPD Direct Current Potential Drop DFPM Davidson-Fletcher-Powell Method DGNM Damped Gauss-Newton Method DTA damage tolerance assessment EC Eddy Current ECT Electrical Capacitance Tomography 10
Description: