ebook img

Non-Destructive Testing of the Graphite Core within an Advanced Gas-Cooled Reactor PDF

283 Pages·2014·23.98 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Non-Destructive Testing of the Graphite Core within an Advanced Gas-Cooled Reactor

Non-Destructive Testing of the Graphite Core within an Advanced Gas-Cooled Reactor A thesis submitted to The University of Manchester for the degree of Doctor of Engineering in the Faculty of Engineering and Physical Sciences 2014 Adam David Fletcher School of Electrical & Electronic Engineering Contents Contents 2 List of Figures 5 List of Tables 9 List of Abbreviations 10 Abstract 13 Declaration 14 Copyright Statement 15 Acknowledgements 16 1 Introduction 17 1.1 The Engineering Doctorate . . . . . . . . . . . . . . . . . . . . . . 17 1.2 Industrial Background . . . . . . . . . . . . . . . . . . . . . . . . 19 1.2.1 The UK Energy Markets . . . . . . . . . . . . . . . . . . . 19 1.2.2 EDF Energy . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.4.1 Economic . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.4.2 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.4.3 Regulatory . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.4.4 Next Generation Nuclear Plant . . . . . . . . . . . . . . . 32 1.5 Achievements and Publications . . . . . . . . . . . . . . . . . . . 33 1.6 Organisation of the Thesis . . . . . . . . . . . . . . . . . . . . . . 35 2 Nuclear Graphite and the AGR 37 2.1 AGR Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2 CONTENTS CONTENTS 2.1.1 Reactor Core . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2 Nuclear Graphite . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.2.1 Structure and Properties . . . . . . . . . . . . . . . . . . . 40 2.2.2 Production . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.2.3 Gilsocarbon Graphite . . . . . . . . . . . . . . . . . . . . . 43 2.3 Mechanisms of Graphite Degradation . . . . . . . . . . . . . . . . 43 2.3.1 Neutron Bombardment . . . . . . . . . . . . . . . . . . . . 44 2.3.2 Radiolytic Oxidation . . . . . . . . . . . . . . . . . . . . . 46 2.4 AGR Brick Failure . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.5 Core Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.5.1 Channel Bore Measuring/Inspection Unit . . . . . . . . . . 52 2.5.2 Trepanning Tool Unit . . . . . . . . . . . . . . . . . . . . . 54 2.5.3 NICIE Mark I and II . . . . . . . . . . . . . . . . . . . . . 55 2.5.4 PoPECT and PECIT . . . . . . . . . . . . . . . . . . . . . 55 3 Review of MIT and Inductance Spectroscopy 57 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.1 Non-Locality . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.2.2 Non-Linearity . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2.3 Ill-Posedness . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.3 Forward Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.3.1 Definition of the Forward Problem . . . . . . . . . . . . . 68 3.3.2 Solution of the Forward Problem . . . . . . . . . . . . . . 74 3.4 Calibration of the Forward Model . . . . . . . . . . . . . . . . . . 75 3.5 Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.5.1 Calculating the Jacobian . . . . . . . . . . . . . . . . . . . 81 3.5.2 Formulations of the Jacobian . . . . . . . . . . . . . . . . 88 4 Inpsection of AGR Brick Cracking 99 4.1 Historic Development . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.2 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.3 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . 115 4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 122 4.5 Crack Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5 Inverse Problems and Regularisation Methods 140 5.1 Inversion Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.1.1 Gradient Descent and Newton’s Method . . . . . . . . . . 146 5.1.2 Gauss-Newton Method . . . . . . . . . . . . . . . . . . . . 149 5.2 Review of Regularisation . . . . . . . . . . . . . . . . . . . . . . . 154 3 CONTENTS 5.2.1 Theory of Regularisation . . . . . . . . . . . . . . . . . . . 156 5.2.2 Tikhonov Regularisation . . . . . . . . . . . . . . . . . . . 161 5.2.3 Parameter Choice and the L-Curve Method . . . . . . . . 164 5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 6 Conductivity Profiling using Impedance Spectroscopy 174 6.1 Flat Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 6.2 Radial Hole Drilling . . . . . . . . . . . . . . . . . . . . . . . . . . 195 6.2.1 Cylindrical Test Cases from Simulated Data . . . . . . . . 196 6.2.2 Lattice Hole Drilling as an Analogue for Weight-Loss . . . 200 6.2.3 Inversion of Drilled Brick Test Problem . . . . . . . . . . . 205 6.3 Experimental L-Curve . . . . . . . . . . . . . . . . . . . . . . . . 221 6.4 AGR Core Measurements . . . . . . . . . . . . . . . . . . . . . . 226 6.4.1 Model without Methane Holes . . . . . . . . . . . . . . . . 228 6.4.2 Model with Methane Holes . . . . . . . . . . . . . . . . . . 233 7 Conclusions and Future Work 238 7.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 8 References 250 A Analytical Solution to the Axi-Symmetric Problem 260 A.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 260 A.2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 262 A.2.1 Reduction of Order . . . . . . . . . . . . . . . . . . . . . . 264 A.3 Matrix Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 A.4 Physical Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . 267 A.4.1 Fields due to coils of finite cross section . . . . . . . . . . . 269 A.4.2 Induced Voltage . . . . . . . . . . . . . . . . . . . . . . . . 270 A.4.3 Coil Impedance . . . . . . . . . . . . . . . . . . . . . . . . 272 B Description of the Finite Element Model 273 B.1 Geometry Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 B.2 Physics Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 B.3 Meshing Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 B.4 Study Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 C Regularised Gauss-Newton Method 281 4 List of Figures 1.1 An overview of the AGR core safety assessment methodology. . . 27 2.1 The graphite core of two Advanced Gas-Cooled Reactor (AGR) designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2 Brick geometry used in this work of HRA/HYA type. . . . . . . . 40 2.3 Graphite dimensional change with dose. . . . . . . . . . . . . . . 50 2.4 General arrangement of the inspection problem. . . . . . . . . . . 53 3.1 Comsol geometry used in the forward problem. . . . . . . . . . . . 69 3.2 Comsol mesh used in the forward problem. . . . . . . . . . . . . . 70 3.3 Error norm for each coil radius pair (coarse calibration). . . . . . 77 3.4 Error norm for each coil radius pair (fine calibration). . . . . . . . 78 3.5 Impedance components for the best fit excite-receive radius pairs. The two “Best fit” curves represent the minimal error curves for the real and imaginary impedance components (“Best fit 1” and “Best fit 2” respectively. . . . . . . . . . . . . . . . . . . . . . . . 79 3.6 Voltage change with frequency for a range of bulk conductivity changes (method 1). . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.7 Voltage change with ∆σ at each frequency (method 1). . . . . . . 92 3.8 Voltage change with frequency for a range of bulk conductivity changes (method 2). . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.9 Voltage change with ∆σ at each frequency (method 2). . . . . . . 94 3.10 Voltage change with frequency for a range of bulk conductivity changes (method 3). . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.11 Voltage change with ∆σ at each frequency (method 3). . . . . . . 96 4.1 Crack dimensioning terminology. . . . . . . . . . . . . . . . . . . 100 4.2 The geometry used in the finite element modelling. . . . . . . . . 108 4.3 Plan view of an AGR fuel channel brick (Hartlepool/Heysham 1 type). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.4 Simulated phase change for the 120 mm sensor with respect to coil position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5 LIST OF FIGURES LIST OF FIGURES 4.5 Simulated amplitude change for the 120 mm sensor with respect to coil position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.6 Simulated phase and amplitude changes for three subsurface slots. 114 4.7 120 mm sensor specification . . . . . . . . . . . . . . . . . . . . . 117 4.8 120 mm sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.9 Prototype Eddy Current Inspection tool (PECIT) sensor specifi- cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.10 PECIT sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.11 Jig used to position the sensors. . . . . . . . . . . . . . . . . . . . 121 4.12 Phase change measured for the 120 mm sensor with respect to coil position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.13 Phase change measured for the PECIT sensor with respect to coil position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.14 Amplitude change measured for the 120 mm sensor with respect to coil position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.15 Amplitude change measured for the PECIT sensor with respect to coil position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.16 Maximum phase changes measured for the two sensors used with respect to the measured slot size. . . . . . . . . . . . . . . . . . . 129 4.17 Intersection of the slot and methane hole. . . . . . . . . . . . . . . 130 4.18 The phase change for a slot of undetermined (30 mm), 120 mm sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 4.19 The phase change for a slot of undetermined size (30 mm), PECIT sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 4.20 The phase change for a slot of undetermined size (50 mm), 120 mm sesnor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 4.21 The phase change for a slot of undetermined size (50 mm), PECIT sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.1 A typical L-curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 6.1 Method used to validate the inversion methodology. . . . . . . . . 175 6.2 Inverted profiles for profile 1. . . . . . . . . . . . . . . . . . . . . . 181 6.3 Convergence parameters for profile 1. . . . . . . . . . . . . . . . . 182 6.4 Inverted profiles for profile 2. . . . . . . . . . . . . . . . . . . . . . 183 6.5 Convergence parameters for profile 2. . . . . . . . . . . . . . . . . 184 6.6 Inverted profiles for profile 3. . . . . . . . . . . . . . . . . . . . . . 185 6.7 Convergence parameters for profile 3. . . . . . . . . . . . . . . . . 186 6.8 Inverted profiles for profile 4. . . . . . . . . . . . . . . . . . . . . . 187 6.9 Convergence parameters for profile 4. . . . . . . . . . . . . . . . . 188 6.10 Inverted profiles for profile 5. . . . . . . . . . . . . . . . . . . . . . 189 6 LIST OF FIGURES LIST OF FIGURES 6.11 Convergence parameters for profile 5. . . . . . . . . . . . . . . . . 190 6.12 Cylindrical brick with lattice of radially drilled holes. . . . . . . . 196 6.13 Inversion results for test case 1 (using simulated forward data). . . 198 6.14 Inversion results for test case 2 (using simulated forward data). . . 199 6.15 Finite Element (FE) models used to test the suitability of hole drilling as an analogue for weight-loss. . . . . . . . . . . . . . . . 202 6.16 Calculatedimpedancefortheinnerholelattice(solidline)together withtheimpedancesobtainedfortherangeofvariableconductivity models (dashed lines). . . . . . . . . . . . . . . . . . . . . . . . . 203 6.17 Calculatedimpedancefortheouterholelattice(solidline)together withtheimpedancesobtainedfortherangeofvariableconductivity models (dashed lines). . . . . . . . . . . . . . . . . . . . . . . . . 204 6.18 Error norm for drilled lattice calibration. . . . . . . . . . . . . . . 204 6.19 Inversion results for a graphite brick with a uniform conductivity profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 6.20 Inversion results for a graphite brick with a uniform conductivity profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 6.21 Inversion results for a graphite brick with a uniform conductivity profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 6.22 Inversion results for a graphite brick with a uniform conductivity profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 6.23 Inversion results for a graphite brick with a lattice of radial holes. 212 6.24 Inversion results for a graphite brick with a lattice of radial holes. 213 6.25 Inversion results for a graphite brick with a lattice of radial holes 214 6.26 Inversion results for a graphite brick with a lattice of radial holes. 215 6.27 Inversion results for a graphite brick with a lattice of radial holes. 216 6.28 Comparison of the converged profiles for two reference conductiv- ities applied to the uniform brick. . . . . . . . . . . . . . . . . . . 219 6.29 Comparison of the converged profiles for two reference conductiv- ities and different λ applied to the radially drilled brick. . . . . . 221 0 6.30 An approximation of the L-curve generated from experimental data.222 6.31 Experimental L-curve analysis. . . . . . . . . . . . . . . . . . . . . 223 6.32 Experimental L-curve error data. . . . . . . . . . . . . . . . . . . 224 6.33 Heysham 1 channel plan with inspected channels . . . . . . . . . 228 6.34 Inversion results for location H13-L5-N22 using two calibrated coil sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 6.35 Simulated impedance for a uniform reference profile, using two coil calibrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 6.36 Inversion results for Heysham 1 outage, August 2013, using a model without methane holes. . . . . . . . . . . . . . . . . . . . . 232 6.37 CoilpositionsexaminedduringtheHeysham12013statutaryoutage.234 7 LIST OF FIGURES 6.38 Inversion results for Heysham 1 outage, August 2013, using a model with methane holes. . . . . . . . . . . . . . . . . . . . . . . 235 6.39 Comparison of inverted profiles using the models with and without methane holes with measurements made from trepanned samples. 237 A.1 Generic problem geometry for the 2-dimensional axi-symmetric case.261 A.2 Estimates of the A field based on the analytical formula and the 2D FEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 B.1 The FE model viewed within Comsol. . . . . . . . . . . . . . . . . 274 B.2 Geometry sub-sequence. . . . . . . . . . . . . . . . . . . . . . . . 275 B.3 Physics nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 B.4 Meshing sub-sequence. . . . . . . . . . . . . . . . . . . . . . . . . 278 B.5 Solver sub-sequence. . . . . . . . . . . . . . . . . . . . . . . . . . 279 8 List of Tables 1.1 The UK electricity market as of 2014. . . . . . . . . . . . . . . . . 20 4.1 The meshing parameters used in the FE work. . . . . . . . . . . . 107 4.2 Sensor geometries. . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.3 Estimated through-wall extent of two slots from experimental data.138 6.1 Summary of inversion parameters. . . . . . . . . . . . . . . . . . . 176 6.2 Approximate electrical conductivity of three graphite grades. . . . 179 6.3 Electrical conductivity of two graphite bricks. . . . . . . . . . . . 205 A.1 Boundary condition coefficients. . . . . . . . . . . . . . . . . . . . 264 A.2 Interior and exterior boundary coefficients. . . . . . . . . . . . . . 266 9 List of Abbreviations ABWR Advanced Boiling Water Reactor ACPD Alternating Current Potential Drop AGR Advanced Gas-Cooled Reactor ALARP as low as reasonably practicable BFGSM Broyden-Fletcher-Goldfarb-Shanno Method CAD Computer Aided Design CBIU Channel Bore Inspection Unit CBMU Channel Bore Measurement Unit CCCA core component condition assessment CRT Cathode Ray Tube CT (X-ray) Computed Tomography CTA Collaborative Training Account CTE Coefficient of Thermal Expansion DCPD Direct Current Potential Drop DFPM Davidson-Fletcher-Powell Method DGNM Damped Gauss-Newton Method DTA damage tolerance assessment EC Eddy Current ECT Electrical Capacitance Tomography 10

Description:
2.1 The graphite core of two Advanced Gas-Cooled Reactor (AGR) designs. “Nondestructive Testing of AGR Graphite Cores,” in Engineering Chal- [24] A. Sutton and V. Howard, “The Role of Porosity in the Accommodation.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.