ebook img

Non-conventional Electrical Machines PDF

270 Pages·9.395 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Non-conventional Electrical Machines

Non-conventional ElectricalMachines Non-conventional Electrical Machines Edited by Abderrezak Rezzoug Mohammed El-Hadi Zaïm Firstpublished2012inGreatBritainandtheUnitedStatesbyISTELtdandJohnWiley&Sons,Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permittedundertheCopyright,DesignsandPatentsAct1988,thispublicationmayonlybereproduced, storedortransmitted,inanyformorbyanymeans,withthepriorpermissioninwritingofthepublishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentionedaddress: ISTELtd JohnWiley&Sons,Inc. 27-37StGeorge’sRoad 111RiverStreet LondonSW194EU Hoboken,NJ07030 UK USA www.iste.co.uk www.wiley.com ©ISTELtd2012 TherightsofAbderrezakRezzougandMohammedEl-HadiZaïmtobeidentifiedastheauthorsofthis workhavebeenassertedbytheminaccordancewiththeCopyright,DesignsandPatentsAct1988. ___________________________________________________________________________________ LibraryofCongressCataloging-in-PublicationData Non-conventionalelectricalmachines/editedbyAbderrezakRezzoug,MohammedEl-HadiZaïm. p.cm. Includesbibliographicalreferencesandindex. ISBN978-1-84821-300-5 1. Electricmachinery. I.Rezzoug,Abderrezak.II.ElHadiZaïm,Mohamed. TK2000.N582011 621.31'042--dc23 2011012248 BritishLibraryCataloguing-in-PublicationData ACIPrecordforthisbookisavailablefromtheBritishLibrary ISBN978-1-84821-300-5 PrintedandboundinGreatBritainbyCPIAntonyRowe,ChippenhamandEastbourne. Table of Contents Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Chapter 1. Theoretical Tools and Materials for Electric Machines. . . . . . . . . . . . . . . . . . . . . . . 1 Abderrezak REZZOUG and Mohammed El-Hadi ZAÏM 1.1. Theoretical tools . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1. Electromagnetism and rotating machines. . . 1 1.1.2. Mechanics of rotating machines. . . . . . . . . . 9 1.1.3. Heat exchanges in rotating machines. . . . . . 11 1.2. Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.2.1. Insulators . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.2.2. Conductors . . . . . . . . . . . . . . . . . . . . . . . . 22 1.2.3. Magnetic materials. . . . . . . . . . . . . . . . . . . 25 1.3. Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . 35 Chapter 2. Low-speed Teeth Coupling Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Daniel MATT, Abdel Mounaïm TOUNZI and Mohammed El-Hadi ZAÏM 2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2. Positioning of the problem. Outline of the feasibility limits . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.2.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . 41 vi Non-conventionalElectricalMachines 2.2.2. Mass or volume performances of electric machines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.2.3. Influence of the electromechanical conversion frequency. . . . . . . . . . . . . . . . . . . . . . 44 2.2.4. Density of electromagnetic force . . . . . . . . . 51 2.2.5. Limit values of mass torque . . . . . . . . . . . . 58 2.2.6. Comparison with the use of a gear motor . . . 61 2.3. Teeth coil winding and toothed pole machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.3.1. Teeth coil winding VRM . . . . . . . . . . . . . . . 63 2.3.2. Toothed pole VRM . . . . . . . . . . . . . . . . . . . 67 2.3.3. Excited toothed poles machines. . . . . . . . . . 71 2.4. Machines with distributed winding and the Vernier effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 2.4.1. Variable reluctance machine. . . . . . . . . . . . 82 2.4.2. Permanent magnets Vernier machine . . . . . 103 2.5. Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . 112 Chapter 3. High-speed Electric Machines . . . . . . . 117 Mohammed El-Hadi ZAÏM, Hamid Ben AHMED and Nicolas BERNARD 3.1. Interest in high-speed rotational operating . . . . 117 3.2. Criteria and constraints of a high-speed machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 3.2.1. Mechanical performance. . . . . . . . . . . . . . . 121 3.2.2. Magnetic losses . . . . . . . . . . . . . . . . . . . . . 126 3.2.3. Aerodynamic losses . . . . . . . . . . . . . . . . . . 133 3.2.4. Guidance system . . . . . . . . . . . . . . . . . . . . 135 3.2.5. Consequences and performance limits . . . . . 139 3.3. Types of electric machines . . . . . . . . . . . . . . . . 142 3.3.1. Induction machine. . . . . . . . . . . . . . . . . . . 142 3.3.2. Synchronous machines. . . . . . . . . . . . . . . . 144 3.3.3. Doubly-salient variable reluctance machine (DSVRM) . . . . . . . . . . . . . . . . . . . . . . . 151 3.4. Examples of applications. . . . . . . . . . . . . . . . . 152 3.4.1. High-speed machining (HSM) . . . . . . . . . . . 153 TableofContents vii 3.4.2. Pumping and compression at very high speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 3.4.3. Kinetic energy storage . . . . . . . . . . . . . . . . 160 3.5. Methodology of high-speed machine optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 3.5.1. Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . 169 3.5.2. Optimization . . . . . . . . . . . . . . . . . . . . . . . 175 3.5.3. Conclusion on the maximization of volumic power . . . . . . . . . . . . . . . . . . . . . . . . . . 184 3.6. Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . 184 Chapter 4. Superconducting Machines . . . . . . . . . 191 Abderrezak REZZOUG, Jean LÉVÊQUE and Bruno DOUINE 4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 191 4.2. Superconducting materials in electrotechnology. . . . . . . . . . . . . . . . . . . . . . . . . . 192 4.2.1. Superconductivity . . . . . . . . . . . . . . . . . . . 193 4.2.2. Critical quantities . . . . . . . . . . . . . . . . . . . 194 4.3. Superconducting materials used in electric machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 4.3.1. LTS superconductors . . . . . . . . . . . . . . . . . 202 4.3.2. HTS superconductors . . . . . . . . . . . . . . . . . 204 4.4. Losses in the self-field of superconductors . . . . . 212 4.4.1. Origin of losses and the Bean model. . . . . . . 213 4.4.2. Assessment of losses. . . . . . . . . . . . . . . . . . 214 4.5. Cryogenic environment . . . . . . . . . . . . . . . . . . 216 4.5.1. Mechanical properties of materials at low temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 4.5.2. Cryogenic fluids. . . . . . . . . . . . . . . . . . . . . 219 4.5.3. Getting low temperature. . . . . . . . . . . . . . . 223 4.5.4. Cryostat . . . . . . . . . . . . . . . . . . . . . . . . . . 230 4.5.5. Vacuum techniques . . . . . . . . . . . . . . . . . . 234 4.6. Superconducting machines. . . . . . . . . . . . . . . . 235 4.6.1. Synchronous machine with a superconducting field system . . . . . . . . . . . . . . . . 237 4.6.2. Homopolar motor . . . . . . . . . . . . . . . . . . . . 242 viii Non-conventionalElectricalMachines 4.6.3. Superconducting screen motor. . . . . . . . . . . 245 4.6.4. Flux barrier motor. . . . . . . . . . . . . . . . . . . 246 4.6.5. Hysteresis motor . . . . . . . . . . . . . . . . . . . . 247 4.6.6. Cold magnet motor. . . . . . . . . . . . . . . . . . . 249 4.7. Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . 250 List of Authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 Introduction The world of electric machines, which is in a constant state of evolution, is seeing its field of application growing every day. The electric machine, historically connected to a network which supplies it with a constant voltage, is today almost as a matter of course fed by a static terminal converter whose voltage varies at a rapid rate, even when its average value is constant or slowly variable. If it appears obvious to consider the machine as one element in an electromechanical conversion chain, most of the time with a control system, the fact remains that for each new class of application, the electric machine must be examined as such. This examination is imposed by the function itself, by the movement to be achieved, the requisite security for each element of the electromechanical conversion chain, the limitation in size, the reduction in weight, the high speed and/or the high acceleration to be reached. In order to respond to increasingly demanding specifications, machine construction has evolved, first of all, thanks to progress made in the development of constituent x Non-conventionalElectricalMachines materials: magnetic materials (ferromagnetic powders, permanent magnets and massive superconductors) and insulating or conductive materials (superconducting wire). The tools of calculation, software and material, make up another aspect among those which have allowed progress in the design of machines; we are considering here the tools used to calculate fields (magnetic, electrical, thermal, force and stress fields), 3D modeling tools and optimization tools. If the representation models progress continually in order to take into account more accurately geometric shapes (including teeth harmonics, mechanical failure), nonlinearity due to magnetic (saturation and hysteresis) or electrical behaviors (law E(J) for superconductors), nothing can replace the experience drawn from the achievements. Nevertheless, the development of tools and the refinement of modeling allow us to perform numerous simulations leading to substantial economies in the design of prototypes and finished products. This book aims to tackle a subject where even the definition is difficult to determine. What is a non- conventional machine? The principles of functioning rely completely on the interaction between a magnetic field and a current (as in the majority of electric machines) or on field-to-field interaction (as in magnetic transmitters). The movement of another category of electromagnetic motor is due to the distortion of the materials themselves (piezoelectric, shape, memory and magnetostrictive material). Introduction xi This second category, made more popular, particularly by piezoelectric motors, constitutes a specific family in the area of electromagnetic converters and will not be tackled in this publication. In the category of electromagnetic machines, non- conventional electromagnetic machines can be defined in several ways, and this is in no way the least of our difficulties. We can attempt to provide a definition starting from the following points: – the type of movement produced by the machine itself (rotation, linear movement, alternating movement, etc.); – the number of degrees of freedom required (rotation or movement on one axis, combination of the two, multi-axis movement, spherical movement, etc.); – required speeds (high, low); – the number of coils installed and the distribution of the magnetic field; – the geometry of the magnetic circuit (structure of the whole machine: cylindrical, flat, hollow, conical, salient or smooth structure, position of the magnets, structure of the teeth-slots); – the materials utilized (permanent magnets, superconductors, non-ferromagnetic materials, etc.); – the dynamic characteristics (electrical and mechanical response times, dynamic impedance, etc.); – the forms of voltage or current delivered by its power source (voltage form and amplitude, quality of the current, etc.).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.