ebook img

Non-coherent character of isoscalar pairing probed with Gamow-Teller strength: New insight into $^{14}$C dating $\beta$ decay PDF

0.14 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Non-coherent character of isoscalar pairing probed with Gamow-Teller strength: New insight into $^{14}$C dating $\beta$ decay

Non-coherent character of isoscalar pairing probed with Gamow-Teller strength: New insight into 14C dating β decay YutakaUtsunoa,b,,YoshitakaFujitac,d ∗ aAdvancedScienceResearchCenter,JapanAtomicEnergyAgency,Tokai,Ibaraki319-1195,Japan bCenterforNuclearStudy,UniversityofTokyo,Hongo,Bunkyo-ku,Tokyo113-0033,Japan cResearchCenterforNuclearPhysics,OsakaUniversity,Ibaraki,Osaka567-0047,Japan dDepartmentofPhysics,OsakaUniversity,Toyonaka,Osaka560-0043,Japan Abstract 7 1We investigatethephasecoherenceofisoscalarpairsfromthe B(GT;0+T =1 1+T =0)valuesin two-particleconfigurations 0of A = 6, 18, and 42 nucleiand two-holeconfigurationsof A = 14 and1 38 one→s. W1e find thatthese Gamow-Teller(GT)matrix 2 elementsarealwaysconstructiveandthusenlargedunderisovector-andisoscalar-pairingHamiltonians,whereastheobservedGT nstrengthsare stronglyhinderedforthe two-holeconfigurations,includingthe famous14C datingβ decay. This indicatesthatthe a actual isoscalar pair, unlike the isovector pair, has no definite phase coherence, which can work against forming isoscalar-pair J condensates. 3 Keywords: Gamow-Tellertransition,Shellmodel,Isoscalarpairing,Phasecoherence ] h t - 1. Introduction theoriginofelusiveISpairing,butmuchattentionhasnotbeen l c paidtophasecoherence. u Pairingcorrelationisoneofthemostbasicpropertieswidely InthisLetter,weshowthattheIS-pairinginteractionalways n seen in quantum many-body problems including condensed- [ causes a specific combination of signs in the lowest (J,T) = matter physics and nuclear physics. This is quite a common (1,0)state foranytwo-particle(2p)configurationandfor any 1phenomenon caused by attractive interactions between con- two-hole (2h) one and that the resulting B(GT;0+T = 1 9vstituentparticles. Innuclei,thesourceoftheattractionisshort- 1+T=0)valueisenhanced. Whilethispropertyw1ellaccoun→ts range nucleon-nucleon forces, owing to which time-reversal 1 6 forthelow-energysuperGTstateforA = 6,18,and42[9],it pairs with large spatial overlap gain much energy and then a 8 failstoexplainstronglyhinderedB(GT)valuesforthe2hcon- 0condensateof the Cooperpairs[1] occurs. Whereasisovector figurations,includingthefamous14Cdatingβdecay. Thisisa 0(IV)pairing(like-particlepairing)with(J,T) = (0,1)isfirmly clearsignaturethattheISpairinrealitydoesnottakeanydef- 1.establishedforinstancebyextrabindingenergiesineven-even inite signs, in contrastto what occurs for the ideal IS pairing. 0nuclei,acondensateofisoscalar(IS)proton-neutronpairswith The IS pairing is thus fragile in nature, constituting an essen- 7(J,T) = (1,0) appears quite elusive [2]. This is puzzling be- tialdifferencefromtheIVpairingwhichalwaysfavorsdefinite 1 causemeanattractionintheISchannelismuchstrongerthanin : signsandisthusrobust. vtheIVchannel.PossiblesignalsforIS-pairingcorrelationhave ibeen explored for instance in terms of binding energies, rota- X tional responses, Gamow-Teller (GT) β-decay properties, and 2. GTstrengthin2pand2hconfigurations r aproton-neutron transfer amplitudes (see [2] for a review). Of particularinterestisthatIS-pairingcorrelationispredictedtobe WestartwithanoverviewofobservedGTstrengthsin2pand quitesensitivetodouble-βdecaymatrixelements[3,4,5,6,7]. 2hconfigurationsontopoftheLS-closedshells. Hereafterwe A condensate of pairs is based on the formation of an en- restrictourselvestotheinitialandfinalstateswiththequantum ergetically stable pair in two-particle configurations. Using a numbers(J,T,T )=(0,1, 1)and(J ,T ,T )=(1,0,0),re- i i iz f f zf simpleattractiveforce,Cooperhasshownthatthebindingen- spectively. In Table 1, expe±rimental B(GT;0+ 1+ ) values 1 → 1,2 ergyof the lowest-energypair is muchlargerthan the onesof aresummarizedforthe p,sd,and pf shells. Forthe2pconfig- theothereigenstatesandalsothanthescaleoftwo-bodymatrix urations,onecanclearlysee thatthe B(GT) isconcentratedin elements[1]. Thishappensbecauseacoherentcombinationof the 1+ state for any valence shell considered, which is named 1 pairedconfigurations—witha specificcombinationofsigns— the low-energysuper GT state [9]. In contrast, the 2h config- cooperativelyworkstolowerenergy[8].Whethersuchacoher- urationshavea strikingdifference: mostoftheGT strengthis entISpairisformedinnucleimayprovideakeytoelucidating exhaustedbyexcitedstates, especiallythe1+ state. Itisnoted 2 that the A = 14 case is well known for radiocarbon dating, which utilizes the very long half-life of 14C, 5730 30 yr, to Correspondingauthor ∗ ± Emailaddress:[email protected](YutakaUtsuno) determinetheageoforganicmaterials. PreprintsubmittedtoPhysicsLettersB January5,2017 Table1: ExperimentalB(GT;0+ 1+ )valuesfor2pand2hconfigurations 3 1 → 1,2 inthep,sd,andpf shells.Datatakenfrom[10,11]. (a) CKII 2p 2h p sd pf p sd ) 2 + A=6 A=18 A=42 A=14 A=38 GT 1+1 11++1 4.7 03..113 02..120 3.5×2.180−6∗ 01.0.560 M( 1 1 2 2 0 We examinehow this strong asymmetryin GT strength be- tweenthe2pand2hconfigurationsarisesintheframeworkof -10 -5 0 5 10 theshellmodel.Thecaseofthepshellisnowtakenasanexam- ple,butsimilardiscussionsareapplicabletoothershells. Inthe 3 shell model, 2p and2h configurationscan be treated in a uni- (b) pairing fied way in terms of particle-hole conjugation, since particle- particletwo-bodymatrixelementsareidenticalwiththecorre- ) 2 + spondinghole-holematrix elements[12]. The only difference GT 1+1 between2pand2hconfigurationsconcerningtheGTtransition M( 1 1 2 is single-particleenergies. Keepingthisin mind, we calculate the GT matrixelementsby changing∆εp = ε(p1/2) ε(p3/2), 0 − whereεstandsforthesingle-particleenergy.Thevaluesof∆ε p forthe2p(A=6)and2h(A=14)configurationsare0.1MeV -1 and 6.3 MeV, respectively, taken from the CKII interaction -10 -5 0 5 10 − [13]. For the two-body part, we first use the CKII interaction as Figure1: (coloronline). Calculated M(GT;1+ )fortwo-nucleonconfigura- 1,2 a realistic one, and show the calculated GT matrix elements tionsinthepshellasafunctionof∆εp. Noquenchingfactorisused. (a)The M(GT;1+) = 1+ σt 0+ (k = 1,2) in Fig. 1 (a). When the CKIIinteraction[13]and(b)theIV-andIS-pairinginteractionsareused. k h k|| ±|| 1i initialandfinalstatesareexpandedas 0+ = αIV(k)abJT and|1+ki = abαIaSb(k)|abJfTfi, respe|ctkiviely,PMab(GaTb;1+k|)isiexii- pressedbytPhesumofsingle-particlecontributionsas as VIVpair = GIV µP†µPµ and VISpair = GIS µD†µDµ, where M(GT;1+k)= mabcd(1+k), (1) P†µ = √1/2 nl(−P1)l√2l+1[a†nla†nl]LM=L0=,S0,=M0S,T==0P1,MT=µ and D†µ = aXbcd √1/2 nl(−1)Pl√2l+1[a†nla†nl]LM=L0=,S0,=M1S,T==µ0,MT=0. Those jj-coupled ∆wεhere>m0ab,cdth(1e+k)M(=GTα;Ia1Sb+∗()kv)αalIcVude(1)shtraobnJgflTyf|e|σnht±a|n|ccdeJsi,Twii.ellFroe-r tSwhoo-rbtlPoedyyphmasaetrcixonevleenmtieonntsasa[r1e4,ex1p5r]essed with the Condon- p 1 producing the observed GT strength for A = 6. This quan- abJT VIVpair cdJT = GIVχIVχIVδ δ , (2) tity is very close to the sum-rule limit of √6 2.45 up to h i ab cd J0 T1 ≃ abJT(cid:12)(cid:12)VISpair(cid:12)(cid:12)cdJT = GISχISχISδ δ , (3) ∆εp 5MeV,andthengraduallydecreasestothe p3/2 single- h (cid:12) (cid:12) i ab cd J1 T0 ≃ (cid:12) (cid:12) particlelimitof √10/3 1.83.For∆ε <0,ontheotherhand, (cid:12) (cid:12) the M(GT;1+)valuesha≃rplydecreasespwithdecreasing∆ε . It with (cid:12) (cid:12) 1 p icnrgosfsoerstthhee Mva(nGisTh)in=g0GlTinsetraetn∆gεthpo=bs−e5rv.7edMienVt,htehuβsdaecccaoyunotf- χIaVb = (−1)la ja+1/2δab (4) p 2 14C. χIaSb = r1+δ (−1)ja−1/2 (2ja+1)(2jb+1) ab p 1/2 j l 3. GTstrengthwithpairinginteractions ×( jb 1/a2 1a )δnanbδlalb, (5) To probe pairing properties in the 2p and 2h configura- wherea, b, c, andd standforsingle-particlestateswithquan- tions, it is interesting to compare those realistic shell-model tum numbers (n ,l , j ) etc., and δ is the abbreviation for a a a ab calculations to the ones using the IS- and IV-pairing interac- δ δ δ . The strengths GIV and GIS are negative for at- tions. TheIV-andIS-pairinginteractionsareequivalenttothe nanb lalb jajb tractive interactions, and here we set GIV = 3.4 MeV and L = 0 part of the surface delta interaction (SDI) in the LS − GIS = 2.8 MeV so that abVIVpaircd 2 and coupling,hencethesimplestinteractionofshort-rangecentral- − ab,cd|h | | iJ=0,T=1| forcecharacter. TheIV-andIS-pairinginteractionsaredefined ab,cd|hab|VISpair|cdiJ=1,T=0|P2 becomethose ofthe CKII inter- aPction. The results of the above pairing interactions are plotted in For the 14C 14N β decay. The corresponding B(GT) value for the Fig.1(b). SimilartotheCKIIinteraction,theenhancementof 14O∗ 14Nβdecay→is2.0 10 4. theGTmatrixelementfromthesingle-particlelimitoccursfor → × − 2 ∆ε > 0. However,thetrendfor∆ε < 0iscompletelydiffer- p p ent.TheM(GT;1+1)valuedecreasesrathermildlyas∆εpmoves Tthaebltew2o:-nGucTlemonatrwixaveelefmunecnttisonhsf||iσ(tT±|=|ii1i)natnhdepfa(iTrin=g0p)haarseedceonnovteendtioasn,(awbh)ebrye awayfromzero.Thisisamonotonicdecreasewhichasymptot- using j> =l+1/2and j< =l 1/2. Wepresentonlythebasisstatesiand f − ically approachesthe p single-particlelimitof √2/3 0.82 thatappearwiththepairingHamiltonians. andnevervanishes. 1/2 ≃ ❍❍❍ f (j j ) (j j ) (j j ) (j j ) The essential feature of the pairing interaction shown in i ❍❍ > > > < < > < < Fig.1(b)isthattheM(GT;1+)valueenlargescomparedtothe (j j ) 2(2l+3) 2 l 2 l 0 p and p single-particle1limits for ∆ε > 0 and ∆ε < 0, > > −q 2l+1 − q2l+1 − q2l+1 re3s/p2ectivel1y/.2Thisiscausedbytheconstrupctiveinterferepnceof (j<j<) 0 −2q2ll++11 −2q2ll++11 −q2(22ll+−11) m (1) in Eq. (1), and such an in-phase character has been abcd presentedforthe pf-shellcaseof42Ca[9,10,16]onthebasis of numerical analyses using the shell model and the random- 4. PhasecoherenceintheISpair phaseapproximation.Itisstillnotveryclear,however,whythe constructive interference occurs and whether it is realized for As indicated by the above proof, the key to obtaining the differentvalenceshells. constructiveinterferenceofm (1+)isthatalltheoff-diagonal abcd 1 Inordertoanswerthisquestion,wefindatheoremconcern- Hamiltonianmatrixelementsareofthesamesignwhichcauses ingthesignofm (1+). phasecoherenceintheISandIVpairs. Westressthatonlythe abcd 1 signs are relevant. The simplest case of the phase coherence Theorem1. Allofthem (1+)valuesareofthesamesignfor is found in the original paper of the Cooper pair [1], where abcd 1 all the off-diagonal matrix elements between paired electrons anyvalenceshellandforanysingle-particlesplittingwhenthe near the Fermi surface are taken to be F and all the diag- two-bodymatrixelementsaregivenbythepairinginteractions −| | ofEqs.(2)and(3)withnegativeGIV andGIS. onal matrix elements are zero. In this case, the lowest eigen- vector is (α ,α ,...,α ) = (1,1,...,1)/√n, and the corre- 1 2 n sponding energy eigenvalue is (n 1)F. The enhancement Proof. We first consider the signs of the two-body matrix el- of eigenenergycomparedto the−off-−diag|on|almatrix elements, ements of Eqs. (2) and (3). Since the sign of χIV is ( 1)la called pairing gap, is due to the phase coherence. In nuclei ab − [see Eq. (4)], all the matrix elements of VIVpair can be nega- it is well known that such a coherent pair is formed between tive (or zero) when one takes a phase convention abJiTi = like-particles. All the off-diagonal (J,T) = (0,1) matrix ele- | i ( 1)laabJiTi . Similarly, for the IS pairing one can easily mentsareindeednegativeinrealisticshell-modelHamiltonians − | i show that the sign of χIaSb is (−1)jb−1/2, thus obtaining entirely ofCKII,USD[17],KB3[18]andGXPF1[19]. Similarphase negative matrix elements of VISpair with a phase convention coherenceintheISpairisexpectedtobeformedonthebasisof abJfTf = ( 1)jb−1/2abJfTf . Hereafter we refer to those theIS-pairingHamiltonian,givingrisetotheconstructiveinter- | i − | i phasechoicesaspairingphaseconvention,andthecomponents ferenceofm (1+). Inreality,however,the2hconfigurations of the eigenvectorsin this conventionare expressed by α¯IV(k) havenearlyvaabncdish1ingB(GT)valuesasshowninTable1,point- ab andα¯IS(k). ing to destructive interference. Hence, the coherent IS pairs ab Thus, when the IS- and IV-pairing interactions are taken, arenotalwaysformedwithrealisticinteractionsbecauseofthe their off-diagonal Hamiltonian matrix elements in the pair- opposite sign in some of the (J,T) = (1,0) two-body matrix ing phase convention are completely negative or zero for any elements. two-nucleonconfiguration,sincesingle-particleenergiesdonot Takingthepshellasanexample,wepresentinFig.2anintu- change the off-diagonal matrix elements in the jj-coupling. itivepictureabouttheformationofcoherentandnon-coherent Forsuchmatriceshavingnon-positiveoff-diagonalmatrixele- ments,itisgenerallytruethatallthecomponentsofthelowest eigenvectorare of the same sign accordingto a versionof the (a) pairing Hamiltonian (b) CKII Hamiltonian Perron-Frobenius theorem in linear algebra . We thus obtain † α¯IaVb(1) ≥ 0andα¯IaSb(1) ≥ 0forany(a,b). AsshowninTable2, v1=(p> p>) v1=(p> p>) the GT matrix elements between two-nucleon wave functions satisfy abJ T σt cdJT 0 for any(a,b)and (c,d)con- f f ± i i h || || i ≤ cerned,hencethesamesignofm (1+). abcd 1 or Thisisamathematicallyexactstatement,andthereforepro- v2=(p> p<) v3=(p< p<) v2=(p> p<) + v3=(p< p<) videsarobustbasisfortheoccurrenceofthelow-energysuper GTstate[9]in2pconfigurations. Figure2: (coloronline). Graphicalillustration ofthesignsof(J,T) = (1,0) off-diagonaltwo-bodymatrixelements(representedas and )inthepairing ⊕ ⊖ phaseconventionandtheresultingsignsofthelowesteigenstate. Thep-shell casesusing(a)theISpairingHamiltonian and(b)theCKIIHamiltonianare One can easily prove this case by showing the expectation value of compared.Theupanddownarrowsstandforpositiveandnegativecoefficients † ~v = (+α1,...,+αk,−αk+1,...,−αn) is greater than or equal to that of~v′ = of|vii,respectively. (+α1,...,+αk,+αk+1,...,+αn)foranyαi 0. ≥ 3 IS pairs for the (a) IS-pairing and (b) CKII Hamiltonians, re- (a) diagonal 0 spectively, where the pairing phase convention is used. Now the lowesteigenstateisexpressedas α v byusingthe ba- i i| ii -0.5 sis states vi . Before proceeding toPdetailed discussions, it | i should be reminded that the negative sign of an off-diagonal -1 matrixelementbetweentwobasisvectors v and v ,denoted i j | i | i as h , favors the same sign of α and α and a positive h fa- vorsijtheoppositesigninthelowiesteigejnstate. Herewe mijean v/l-1.5 |v1i = |p>p>i, |v2i = |p>p<iand|v3i = |p<p<i, where p> and -2 <j j |V|j j > p are p and p , respectively. As illustrated in Fig. 2 (a), > > > > < 3/2 1/2 <j j |V|j j > the obtainedcoherentpair isquite stabilized bythe IS-pairing > < > < -2.5 Hamiltonian,sinceanycombinationof(i, j)satisfiestheabove <j j |V|j j > < < < < rule. On the other hand, the CKII Hamiltonian has a positive -3 h andnegativeh andh . Inthiscase,theremustbeatleast 0 2 4 6 8 10 23 12 13 acombinationof(i, j)thatdoesnotcomplywiththeaboverule, l (b) off-diagonal asillustratedinFig.2(b). Thisisanalogoustothegeometrical 0 frustration in magnetism [20], although the physical situation is rather different. The signs of α can no longer be uniquely i -0.5 determined,andtheactualsignsdependonthediagonalterms. For the A = 6 system, the valuesofh11, h22 and h33 are close -1 tooneanother,andthenthesamesignofα andα isrealized 1 2 because of h12 h23 h13. In this case v3 has a small -1.5 | | ≫ | | ≃ | | | i amplitudeof the oppositesign, hencecontributinglittle to the eigenstate. Thedominanceof v1 and v2 ofthesamesignac- -2 <j j |V|j j > | i | i > > > < countsfortheenhancedB(GT)value. Forthe A = 14system, <j j |V|j j > h11 ishigherthanh33 bymorethan10MeV,sothattheground -2.5 > > < < <j j |V|j j > stateisdominatedby v and v .Theresultingsignsofα and > < < < 2 3 2 | i | i α are oppositebecauseof h > 0, thusleadingto the nearly -3 3 23 0 2 4 6 8 10 vanishingB(GT)value. l In this way the favorable signs for abJ=0T=1 in the IS | i pairarenotdefiniteanddependonthecoreassumedforrealistic Figure3: (coloronline). (a)Diagonaland(b)off-diagonalmatrixelementsof interactionswhoseoff-diagonal(J,T) = (1,0)matrixelements abVcd J=1,T=0 devided bylforthe SDI,where the dashed and solid lines h | | i are notcompletelyofthesame signin thepairingconvention. standfortheL=0andtotalmatrixelements,respectively. Thestrengthofthe This is an essential differencebetween IV and IS pairing, and interactionisdeterminedsothatitsL=0termcanbethesameastheIS-pairing interactionwithGIS= 1. clearlyworksagainstforminganIS-paircondensate. − We pointoutthatnon-coherentISpairscanbe probedwith pair-transfer strength, which is regarded as a good measure of IS pairing correlation [2]. The IS-pair creation and re- withtheSDI,andstrongcancellationbetweenL = 0and2oc- moval strengths are now defined as |hJfTf|||D†|||JiTii|2 and cursespeciallyforhj<j<|V|j′>j′<iwithlowlandl′.Forl=1,for |hJfTf|||D|||JiTii|2, respectively, and we considerthe transition instance,hj>j>|V|j>j<istillhasalargenegativevalue,whereas tothelowest(Jf,Tf) = (1,0)state. ByusingtheCKIIinterac- hj<j<|V|j>j<ivanishes. In addition,the L = 2 termgivesrise tion,theIS-pairremovalstrengthfrom16Oisonly5.3×10−3, totheoppositesignbetweenhjj|V|j′>j′<′iandhj>j<|V|j′>j′<′ifor while the IS-pair creation strength on 4He is 8.1. A similar l′ =l′′ 2andn′ =n′′+1,thuscausingfrustrationamong jj , − | i strongasymmetrybetweentheIS-paircreationandremovalis |j>j<iand|j′>j′<′iwhenhjj|V|j>j<i<0issatisfied. Weconfirm alsoobtainedforthesdshell. thatfinite-rangeinteractionsleadtoessentiallysimilarresultsto Finally,webrieflysurveytheoriginofdifferenceinthesigns the SDI byusing the VMU interaction[21], butsome quantita- oftheoff-diagonal(J,T) = (1,0)matrixelementsbetweenre- tivedifferencesappear.Forinstance,the p<p<V p>p< matrix h | | i alisticinteractionsandtheIS-pairinginteraction. Firstwecon- element,whichisexaclyzerofortheSDI,ispositivebytaking sider the central forces. Since the IS-pairing Hamiltonian is onlythe(S,T)=(1,0)termoftheVMU,andthismatrixelement equivalenttothe(L,S)=(0,1)termoftheSDI,thedominance can be positive or negative depending on the strength of the oftheL=0centralforceisthesourceofthecoherentISpairs, (S,T) = (0,0)term. Itshouldbenotedthatthe(S,T) = (0,0) as well as for the usual IV pairing. While the (L,S) = (2,1) termvanishesforzero-rangeinteractions. term is absentin the (J,T) = (0,1)matrixelements, thisterm Another important source to change the signs of (J,T) = can modify the (J,T) = (1,0)matrix elements. In Fig. 3, the (1,0) matrix elements is the non-central forces. It has been effectofthe(L,S)=(2,1)termispresentedforvariousorbital pointedoutbyJancoviciandTalmithatphenomenologicalten- angularmomentalbyusingtheSDI.Ingeneral, j j V j j sorforcesareneededtoaccountfortheextraordinarylonglife- h > >| | ′> ′<i and j j V j j matrix elements due to L = 2 are positive time of 14C [22]. It is worth mentioning that its microscopic h < <| | ′> ′<i 4 origin has recently been discussed from ab initio approaches [15] A.PovesandG.Martinez-Pinedo,Phys.Lett.B430(1998)203. [23,24,25,26,27]. [16] C.L.Bai,H.Sagawa,G.Colo`,Y.Fujita, H.Q.Zhang,X.Z.Zhang,and In the present context, the 14C lifetime problem is a man- F.R.Xu,Phys.Rev.C90(2014)054335. [17] B.A.BrownandB.H.Wildenthal, Ann.Rev.Nucl.Part.Sci.38(1988) ifestation of the non-coherent IS pair formed by the positive 29. sign of p>p<V p<p< due to the L , 0 central forces and [18] A.PovesandA.Zuker,Phys.Rep.70(1981)235. h | | i the non-central forces. This idea can readily be applied to [19] M.Honma, T.Otsuka, B.A.Brown, andT.Mizusaki, Phys.Rev.C65 (2002)061301(R);ibid.69(2004)034335. other cases. For instance, the small B(GT) value for A = 38 [20] Forinstance,R.MoessnerandA.P.Ramirez,PhysicsToday59(2006)24. (see Table 1) is caused by the positive sign of d d Vd d > < < < [21] T.Otsuka,T.Suzuki,M.Honma,Y.Utsuno,N.Tsunoda,K.Tsukiyama, h | | i madein a similar wayto p p V p p > 0. Incontrast, the andM.Hjorth-Jensen,Phys.Rev.Lett.104(2010)012501. > < < < j j V j j matrixelemhentsh|av|ealwaiyslargenegativeval- [22] B.JancoviciandI.Talmi,Phys.Rev.95(1954)289. > > > < h | | i [23] A.Aroua,P.Navra´til,L.Zamick,M.S.Fayache,B.R.Barrett,J.P.Vary, uesbothinschematicandrealisticinteractions,thuscausingthe andK.Heyde,Nucl.Phys.A720(2003)71. low-energysuperGTstate[9]in2pconfigurations. [24] J.W.Holt, G.E.Brown, T.T.S.Kuo,J.D.Holt,andR.Machleidt, Phys. Rev.Lett.100(2008)062501. [25] J.W.Holt,N.Kaiser,andW.Weise,Phys.Rev.C79(2009)054331. 5. Conclusion [26] P.Maris, J.P.Vary,P.Navra´til, W.E.Ormand, H.Nam,andD.J.Dean, Phys.Rev.Lett.106(2011)202502. WehaveshownthatthestrongasymmetryintheB(GT;0+ [27] A. Ekstro¨m, G.R. Jansen, K.A. Wendt, G. Hagen, T. Papenbrock, 1+)valuesbetween2pand2hsystemsisaclearsignature1th→at S.Bacca,B.Carlsson,andD.Gazit,Phys.Rev.Lett.113(2014)262504. 1 a coherent combination of (J,T) = (1,0) pairs is not neces- sarily formed. By introducing the pairing phase convention and the idea of frustration, we have presented a comprehen- sivebutmathematicallyrobustexplanationastowhytheideal IS-pairinginteractionalwaysleadsto phasecoherenceregard- lessofsingle-particleenergiesbutrealisticinteractionsdonot. This is in sharp contrast to the IV pairing in realistic interac- tions,andmayprovideakeytoelucidatingtheoriginofelusive IS-pair condensatesin nature. It is of greatinterestto investi- gatehowmodernmicroscopiceffectiveinteractionspredictthe (J,T)=(1,0)matrixelementsinawiderangeofnuclearshells and how the non-coherenteffect changes observablesin more complexnuclei,includingdouble-βdecaymatrixelements. Acknowledgement Y.U.thanksM.MoriforfruitfuldiscussionsandN.Shimizu for his careful reading of the manuscript. This work was supported in part by JSPS KAKENHI, under Grant No. JP15K05094andNo. JP15K05104. References [1] L.N.Cooper,Phys.Rev.104(1956)1189. [2] S.FrauendorfandA.O.Macchiavelli, Prog.Nucl.Part.Phys.78(2014) 24. [3] P.VogelandM.R.Zirnbauer,Phys.Rev.Lett.57(1986)3148. [4] J.Engel,P.Vogel,andM.R.Zirnbauer,Phys.RevC37(1988)731. [5] N.HinoharaandJ.Engel,Phys.Rev.C90(2014)031301(R). [6] J. Mene´ndez, N. Hinohara, J. Engel, G. Mart´ınez-Pinedo, and T.R.Rodr´ıguez,Phys.Rev.C93(2016)014305. [7] J.EngelandJ.Mene´ndez,arXiv:1610.06548. [8] For instance, K. Heyde, The Nuclear Shell Model (Springer-Verlag, Berlin,1990). [9] Y.Fujitaetal.,Phys.Rev.Lett.112(2014)112502. [10] Y.Fujitaetal.,Phys.Rev.C91(2015)064316. [11] Evaluated Nuclear Structure Data File (ENSDF), http://www.nndc.bnl.gov/ensdf/. [12] Forinstance,I.Talmi,SimpleModelsofComplexNuclei,(HarwoodAca- demicPublishers,Switzerland,1993). [13] S.CohenandD.Kurath,Nucl.Phys.A101(1967)1. [14] J.A.Evans,G.G.Dussel,E.E.Maqueda,andR.P.Perazzo,Nucl.Phys.A 367(1981)77. 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.