ebook img

Non-Archimedean L-Functions and Arithmetical Siegel Modular Forms PDF

202 Pages·2011·1.03 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Non-Archimedean L-Functions and Arithmetical Siegel Modular Forms

Michel Courtieu, Alexei Panchishkin Non-Archimedean L-Functions and Arithmetical Siegel Modular Forms SPINSpringer’s internal project number,if known { Monograph, LNM series { August 3, 2003 Springer Berlin Heidelberg NewYork HongKong London Milan Paris Tokyo Preface The present book is a renewed version of the LNM 1471 "Non-Archimedean L-Functions of Hilbert and Siegel Modular Forms" by Alexei Panchishkin, appearedin 1991.A partof this newbook usesthe resultsof the PhD Thesis of Michel Courtieu (Grenoble, Institut Fourier, 2000). The main subject of the book is the p-adic theoryof L-functions of Siegel modularforms.Inthe caseofthe Riemannzetafunction,andofthe Dirichlet L-functions, this theory goes back to the classical Kummer congruences for Bernoulli numbers, and to their p-adic interpretation given by Kubota and Leopoldt, and by Mazur. Using the technics of the p-adic integration, and of the Rankin-Selberg convolution method, we construct a p-adic analytic continuation of the standard L-functions of Siegel modular forms in a very general case, that is, for any non-zero Satake p-parameter. There are three basic new features of this second version, found recently by Alexei Panchishkin: 1. The use of arithmeticalnearlyholomorphicSiegel modular forms,viewed ascertainformalexpansionsofmanyvariableswith algebraiccoe(cid:14)cients. 2. Theuseofarithmeticaldi(cid:11)erentialoperatorsactingonnearlyholomorphic Siegel modular forms. 3. The method of canonical projection allowing to deduce congruences be- tweenspecialL-valuesfromcongruencesbetweenarithmeticalnearlyholo- morphicSiegelmodularforms,viaasystematicuseofAtkin’sU -operator p (the Frobenius operator (cid:5)+(p) of A.N.Andrianov). ThisnewmethodgivesaconceptualexplanationfortheformulasofManin typeintheSiegelmodularcase,obtainedinLNM1471.Infact,thepreviously used distributions admit a canonical lift to distributions with values in an appropriate subspace of arithmetical Siegel modular forms. This lift depends on a choice of a non-zero Satake parameter. The book is intended to researches,to postgraduatestudents, and to pro- fessors,interestedinrepresentationtheory,functionalanalysisandarithmetic algebraic geometry. It contains, together with new results, much background VI Preface information about p-adic measures, their Mellin transforms, Siegel modular forms, Hecke operators acting on them, Euler products etc. It seems that the general methods developed in the book may have a numberofotherapplications,inparticular,tofamiliesofSiegelmodularforms and L-functions. Saint-Hilaire du Touvet, August 2003 Contents 1 Non-Archimedean analytic functions::::::::::::::::::::::: 13 1.1 p-adic numbers and the Tate (cid:12)eld ......................... 13 1.2 Continuous and analytic functions ......................... 17 1.3 Distributions, measures, and the abstractKummer congruences 21 1.4 Iwasawaalgebra and the non-Archimedean Mellin transform .. 28 1.5 Admissible measures and their Mellin transform............. 35 1.6 Complex valued distributions, associated with Euler products . 38 2 Siegel modular forms and the holomorphic projection operator ::::::::::::::::::::::::::::::::::::::::::::::::::: 45 2.1 Siegel modular forms and Hecke operators .................. 46 2.2 Theta series, Siegel-Eisenstein series and the Rankin zeta function................................................ 62 2.3 Formulas for Fourier coe(cid:14)cients of the Siegel-Eisenstein series. 70 2.4 Holomorphic projection and Maass operator ................ 83 2.5 Explicit description of di(cid:11)erential operators................. 91 3 Arithmetical di(cid:11)erential operators::::::::::::::::::::::::: 95 3.1 Description of the Shimura di(cid:11)erential operators ............ 95 3.2 Nearly holomorphic Siegel modular forms................... 99 3.3 Algebraic di(cid:11)erential operatorsof Maass and Shimura........106 3.4 Arithmetical variables of nearly holomorphic forms ..........117 4 Admissible measures for standard L{functions:::::::::::::127 4.1 Congruences between modular forms and p-adic integration...127 4.2 Algebraic di(cid:11)erential operators and Siegel-Eisenstein distributions ............................................133 4.3 A general result on admissible measures ....................144 4.4 The standard L-function .................................148 4.5 Algebraic linear forms on modular forms ...................165 4.6 Congruences and proof of the Main theorem ................174 VIII Contents References:::::::::::::::::::::::::::::::::::::::::::::::::::::187 Index::::::::::::::::::::::::::::::::::::::::::::::::::::::::::195 Introduction Kummer Congruences and Bernoulli Numbers The starting point in the theory of zeta functions is the expansion of the Riemann zeta-function (cid:16)(s) into the Euler product: 1 (cid:16)(s)= (1 p(cid:0)s)(cid:0)1 = n(cid:0)s (Re(s)>1): (cid:0) p n=1 Y X Thesetofargumentssforwhich(cid:16)(s) isde(cid:12)nedcanbeextendedtoalls C, 2 s=1, and we may view C as the group of all continuous quasicharacters 6 C=Hom (R(cid:2);C(cid:2)); y ys cont + 7(cid:0)! of R(cid:2). The special values (cid:16)(1 k) at negative integers are rational numbers: + (cid:0) B k (cid:16)(1 k)= ; (cid:0) (cid:0) k whereB areBernoullinumbers,whicharede(cid:12)nedbytheformalpowerseries k equality 1 B tn tet eBt = n = ; n! et 1 n=0 (cid:0) X and we know (by the Sylvester-Lipschitz theorem, see [Mi-St], [Kat3]) that B c Z implies ck(ck 1) k Z: 2 (cid:0) k 2 The theory of non-Archimedean zeta-functions originates in the work of Kubota and Leopoldt [Ku-Le] containing p-adicinterpolationof these special values. Their construction turns out to be equivalent to classical Kummer congruences for the Bernoulli numbers, which we recall here in the following form (see [Kat3]): 2 Introduction Let p be a (cid:12)xed prime number, c>1 an integer prime to p. Put (cid:16)(c)( k)=(1 pk)(1 ck+1)(cid:16)( k) (p) (cid:0) (cid:0) (cid:0) (cid:0) and let h(x) = n (cid:11) xi Z [x] be a polynomial over the ring Z of p-adic i=0 i 2 p p integers such that P x Z = h(x) pmZ : p p 2 ) 2 Then we have that n (cid:11) (cid:16)(c)( i) pmZ : i (p) (cid:0) 2 p i=0 X This property expresses the fact that the numbers (cid:16)(c)( k) depend continu- (p) (cid:0) ously on k in the p-adic sense. This can be deduced from the known formula for the sum of k-th powers: N(cid:0)1 1 S (N)= nk = [B (N) B ] k k+1 k+1 k+1 (cid:0) n=1 X in which B (x) =(x+B)k = k k B xk(cid:0)i denotes the Bernoulli polyno- k i=0 i i mial. Indeed, all summands in S (N) depend p-adic analytically on k, if we k P (cid:0) (cid:1) restrict ourselves to numbers n, prime to p, so that the desired congruence followsifweexpressthe numbers(cid:16)(c)( k)intermsof Bernoullinumbers(see (p) (cid:0) [Kat3]). p{adic L{Functions and Mellin Transforms Thedomainof de(cid:12)nitionof p-adiczeta functionsisthe p-adicanalyticLie group X =Hom (Z(cid:2);C(cid:2)) p cont p p of all continuous p-adic characters of the pro(cid:12)nite group Z(cid:2), where C =Q p p p denotes the Tate (cid:12)eld (completion of an algebraic closure of the p-adic (cid:12)eld Q ), so that all integers k can be viewed as the characters xk : y yk. Tbhe p p 7! construction of Kubota and Leopoldt is equivalent to the existence a p-adic analyticfunction(cid:16) :X C withasinglepoleatthepointx=x(cid:0)1,which p p ! p p becomes a bounded holomorphic function on X after multiplication by the p elementary factor (x x 1), (x X ), and is uniquely determined by the p p (cid:0) 2 condition (cid:16) (xk)=(1 pk)(cid:16)( k) (k 1): p p (cid:0) (cid:0) (cid:21) Thisresulthasaverynaturalinterpretationinframeworkofthetheoryof non-Archimedeanintegration(duetoB.Mazur):thereexistsap-adicmeasure (cid:22)(c) on Z(cid:2) with values in Z such that xk(cid:22)(c) = (cid:16)(c)( k). Indeed, if we p p Z(cid:2)p p (p) (cid:0) integrate h(x) over Z(cid:2) we exactly get the above congruence. On the other p R Introduction 3 hand,inordertode(cid:12)neameasure(cid:22)(c)satisfyingtheaboveconditionitsu(cid:14)ces for any continuous function (cid:30) : Z(cid:2) Z to de(cid:12)ne its integral (cid:30)(x)(cid:22)(c). p ! p Z(cid:2)p Forthispurposeweapproximate(cid:30)(x)byapolynomial(forwhichtheintegral R is already de(cid:12)ned), and then pass to the limit. The important feature of the construction is that it equally works for primitive Dirichlet characters (cid:31) modulo a power of p. Throughout the book we (cid:12)x an embedding i :Q, C (0.1) p p ! and we shall identify Q with a sub(cid:12)eld of C and of C . Then a Dirichlet p character (cid:31):(Z=Z )(cid:2) Q(cid:2) becomes an element of the torsion subgroup pN ! Xtors X =Hom (Z(cid:2);C(cid:2)) p (cid:26) p cont p p andtheaboveequalityalsoholdsforthespecialvaluesL( k;(cid:31))oftheDirich- (cid:0) let L-series 1 L(s;(cid:31))= (cid:31)(n)n(cid:0)s = (1 (cid:31)(p)p(cid:0)s)(cid:0)1; (cid:0) n=1 p X Y so that we have (cid:16) ((cid:31)xk)=i (1 (cid:31)(p)pk)L( k;(cid:31)) (k 1; k Z; (cid:31) Xtors): (0.2) p p p (cid:0) (cid:0) (cid:21) 2 2 p (cid:2) (cid:3) The original construction of T. Kubota and H.W. Leopoldt [Ku-Le] was suc- cessesfully used by K. Iwasawa [Iw] for the description of the class groups of cyclotomic(cid:12)elds.Sincethen the classoffunctionsadmittingp-adicanalogues has gradually extended. Zeta-functions(ofcomplexvariable)canbeattachedascertainEulerprod- uctstovariousobjectssuchasdiophantineequations,representationsofGalois groups, modular forms etc..., and they play a crucial role in modern number theory. Deep interrelations between these objects discovered in last decades arebasedonidentitiesforthecorrespondingzetafunctionswhichpresumably all(cid:12)tintoageneralconceptofLanglandsofL-functionsassociatedwithauto- morphic representationsof a reductive group G overa number (cid:12)eld K. From this pointof view the study of arithmeticpropertiesof thesezeta functions is becoming especially important. The theory of modular symbols (due to B. Mazur and Y.I. Manin, see [Man1],[Man3],[Maz-SD])providedanon-Archimedeanconstructionoffunc- tions, which correspond to the case of the group G=GL over K =Q. Sev- 2 eralauthors(includingP.Deligne,K.A.Ribet,N.M.Katz,P.F.Kur(cid:20)canovand others, see [De-Ri], [Kat1], [Kat2], [Kur(cid:20)c1], [Kur(cid:20)c2], [Sho], [Vi1], [Vi2]) inves- tigated this problem for the case G = GL and GL over totally real (cid:12)elds 1 2 and (cid:12)elds of CM-type (i.e. totally imaginary quadratic extentions of totally real (cid:12)elds). But the case of more general reductive groups remained unclear until the mid-eighties although important complex analytic properties of the 4 Introduction LanglandsL-functionshadbeenproved.Inlastdecadesageneralapproachto construction of non-Archimedean L-functions associated with various classes of automorphicforms was developed, in particular,for the case of symplectic groups of even degree over K = Q and the group G = GL GL over a 2 2 (cid:2) totally real (cid:12)eld K. ThemaintooloftheappearingtheoryisthesystematicuseoftheRankin- Selbergmethodforobtainingbothcomplex-valuedandp-adicdistributionsas certain integrals involving cusp forms and Eisenstein series. By this method we constructed non-Archimedean analogues of the standard zeta functions attached to Siegel cusp forms of even degree and of su(cid:14)ciently large weight. p{adic L{Functions of Siegel Modular Forms. For a Siegel modular form f(z) of degree m and weight k, which is an eigenfunction of the Hecke algebra, and for each prime number p one can de(cid:12)ne the Satake p-parameters of f denoted by (cid:11) (p) with i = 0;1; ;m. i (cid:1)(cid:1)(cid:1) In this introduction we assume for simplicity that f is a modular form with respect to the whole Siegel modular group (cid:0)m = Sp (Z), but in Chapter m 3 we treat the greneral case of forms of level C with a Dirichlet character modC. The standard zeta function of f is de(cid:12)ned by means of the Satake p-parametersas the following Euler product: (cid:31)(p) m (cid:31)(p)(cid:11) (p) (cid:31)(p)(cid:11) (p)(cid:0)1 (cid:0)1 i i (s;f;(cid:31))= 1 1 1 ; D p ((cid:18) (cid:0) ps (cid:19)i=1(cid:18) (cid:0) ps (cid:19)(cid:18) (cid:0) ps (cid:19)) Y Y where(cid:31) isan arbitraryDirichlet character.Accordingto A.N.Andrianovand V.L.Kalinin[An-Ka],thisfunctioncanberepresentedinaformofanintegral convolution of f and a theta series with a Siegel-Eisenstein series as a ker- nel. The construction of its p-adic analytic continuation is based on explicit formulas for the special values of the standard zeta function, and this result is equivalent to the existence of some generalized Kummer congruences for these values. Before giving the precise statements of our results we introduce the following normalized zeta functions m ?(s;f;(cid:31))=(2(cid:25))(cid:0)m(s+k(cid:0)(m+1)=2)(cid:0)((s+(cid:14))=2) (cid:0)(s+k j) (s;f;(cid:31)) D 0 (cid:0) 1D j=1 Y (cid:0)(s;f;(cid:31))=(cid:0)((s+(cid:14))=2)(cid:0)1 ?(s;f;(cid:31)) @ A D D i(cid:14)(cid:25)1=2(cid:0)s (cid:0)(s;f;(cid:31))= ?(s;f;(cid:31)) D (cid:0)((1 s+(cid:14))=2)D (cid:0) where (cid:14) =0 or 1 according as (cid:31)( 1)=1 or (cid:31)( 1)= 1, and let (cid:0) (cid:0) (cid:0) f(z)= a((cid:24))e ((cid:24)z) k m 2Sm (cid:24)>0 X

Description:
where Bk are Bernoulli numbers, which are defined by the formal power series equality. eBt = ∞. ∑ n=0. Bntn n! = . cyclotomic fields. Since then the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.