ebook img

Non-Abelian T-duality and the AdS/CFT correspondence PDF

64 Pages·2013·0.58 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Non-Abelian T-duality and the AdS/CFT correspondence

Availableonlineatwww.sciencedirect.com NuclearPhysicsB873(2013)1–64 www.elsevier.com/locate/nuclphysb Non-Abelian T-duality and the AdS/CFT N = correspondence: New 1 backgrounds Georgios Itsiosa,c, Carlos Núñezb,∗, Konstadinos Sfetsosc,a, Daniel C. Thompsond,e aDepartmentofEngineeringSciences,UniversityofPatras,26110Patras,Greece bSwanseaUniversity,SchoolofPhysicalSciences,SingletonPark,SwanseaSA28PP,UK cDepartmentofMathematics,UniversityofSurrey,GuildfordGU27XH,UK dTheoretischeNatuurkunde,VrijeUniversiteitBrussel,Belgium eInternationalSolvayInstitutes,Pleinlaan2,B-1050Brussels,Belgium Received25February2013;accepted2April2013 Availableonline6April2013 Abstract Weconsidernon-AbelianT-dualityonN =1supergravitybackgroundspossessingwellunderstoodfield theoryduals.ForthecaseofD3-branesatthetipoftheconifold,wedualisealonganSU(2)isometry.The resultisatype-IIAgeometrywhoselifttoM-theoryisofthetyperecentlyproposedbyBahetal.asthedual tocertainN =1SCFTquiversproducedbyM5-braneswrappingaRiemannsurface.Inthenon-conformal caseswefindsmoothdualsinmassiveIIAsupergravitywithaRomansmassnaturallyquantised.Weinitiate theinterpretationofthesegeometriesinthecontextofAdS/CFTcorrespondence.Weshowthatthecentral chargeandtheentanglemententropyareleftinvariantbythisdualisation.Thebackgroundssuggestaform ofSeibergdualityinthedualfieldtheorieswhichalsoexhibitdomainwallsandconfinementintheinfrared. ©2013ElsevierB.V.Allrightsreserved. 1. Introduction Within the context of gauge/string duality, solution generating techniques in supergrav- ity are an extremely powerful tool. Prominent examples include the use of bosonic and fermionicT-dualitiestoshowdualsuperconformalsymmetryatstrongcoupling[1,2];theT–s–T * Correspondingauthor. E-mailaddresses:[email protected](G.Itsios),[email protected](C.Núñez),[email protected] (K.Sfetsos),[email protected](D.C.Thompson). 0550-3213/$–seefrontmatter ©2013ElsevierB.V.Allrightsreserved. http://dx.doi.org/10.1016/j.nuclphysb.2013.04.004 2 G.Itsiosetal./NuclearPhysicsB873(2013)1–64 transformationsthatarethestringanalogueofβ-deformationsingaugetheory[3]andwhichcan alsobeusedtoconstructgravitydualsforsomenon-relativisticfieldtheories[4–6];theuseofG structurerotationstoobtainsolutionswith/withoutback-reactedsourcebranesinconifoldrelated geometries[7–9].Evidentlysomeofthesetechniques,namelyU-dualities,areunderstoodtobe symmetriesoftheunderlyingstringtheory.FermionicT-duality,however,providesanexample wherethesymmetryisonlyvalidattree-levelinstringperturbationtheorybutnonethelesshas applicationsinAdS/CFTwhenconsideringjusttheplanarlimit. PerformingaT-dualitywithrespecttoanon-Abelianisometrygroupisalsoasolutiongen- erating technique of supergravity. Rather like the case of fermionic T-duality it is not expected tobeafullsymmetryofstringperturbationtheory.Butitisnonethelessnaturaltoaskwhatrôle itmighthavewithinthegauge/stringcorrespondence.Thisstudywasinitiatedin[10]inwhich thedualisationofAdS ×S5withrespecttoanSU(2)isometrygroupwascarriedout.Theresult 5 wassomewhatsurprising;thedualwasfoundtobeasolutionoftype-IIAsupergravitywhoselift toM-theorycapturessomeuniversalpropertiesofthesolutionsfoundbyGaiottoandMaldacena in[11],asdualgeometriestothegeneralisedN =2quiverSCFTsproposedbyGaiottoin[12]. Further progress and works in studying non-Abelian T-duality in this context can be found in [13–17]andabriefreviewofelementaryaspectsofnon-AbelianT-dualityin[18]. Motivatedbythis,inthispaperweshallinvestigatenon-AbelianT-dualityappliedtosolutions withminimalsupersymmetrywhosefieldtheorydualiswellunderstood. TheKlebanov–Witten(KW)solution[19]providesthefirstsuchexample;thissolutionrepre- sentstheSU(N)×SU(N)conformalfieldtheoryonD3-braneslocatedatthetipoftheconifold. Wearealsointerestedingaugetheorieswhicharenotconformalbutrather,havenon-trivialRG flows.TheprototypicalexampleistheKlebanov–Tseytlin(KT)solution[20]whichincorporates fractionalbranes(D5-braneswrappedontheshrinkingtwo-cycleoftheconifold)andisagood modelfortheUVdynamicsofanSU(N)×SU(N+M)theory.AsoneflowstowardstheIRthe theoryundergoesasequenceofSeibergdualitiestoeverdecreasinggaugegroupranks.IntheIR thesolutionofKTissingular,afactwhichisremediedwhenM isamultipleofN (N =kM), as it occurs in the Klebanov–Strassler (KS) solution [21], wherein strong coupling effects take holdandremovethesingularitybyreplacingtheconifoldwithitsdeformation.IntheIRthethe- ory exhibits R-symmetry breaking (or rather Z →Z ), confinement,domain walls and other 2n 2 interesting phenomena. One level up in complexity is the construction of the gravity dual for the case in which the KS field theory is exploring its baryonic branch; in this case there exists aone-parameterfamilyofregulardeformations[22]interpolatingbetweentheKSsolutionand thewrappedD5-branesolutionsin[23,7,24,25]. AlloftheseexamplespossessrichisometrygroupscontainingatleastanSU(2)factoralong which we will dualise. There is also a U(1) isometry of the metric (at least in the KW and KT solutions) that may be understood in the dual field theory as the R-symmetry. The Killing spinorsofthebackgroundareinvariantundertheSU(2)action,inasensewhichweshallexplain. Thiscorrespondstothefactthatthesupersymmetriesareunchargedundertheglobal(flavour- like) symmetries in the field theory and because of this performing the dualisation preserves supersymmetry.ThisshouldbecontrastedwithperforminganAbelianT-dualityintheinternal space which would either destroy supersymmetry or result in a singular background.Since the SU(2) isometrygrouphasthreegeneratorsonewillarriveatsolutionsin(massive)IIA.Letus nowsummarisewhathappensineachcaseinascendingorderofcomplexity. WefindthatinthecaseofKWthedualgeometrycanbeliftedtoM-theoryandcanbedirectly matched to some solutions recently proposed by [26,27], generalising the eleven-dimensional solutionsof[28],asdualtotheN =1SCFTsobtainedfromM5-braneswrappedonaRiemann G.Itsiosetal./NuclearPhysicsB873(2013)1–64 3 surface.IncludedinthisclassofSCFTaretheso-calledSicilianquiversof[29].Thisisadirect N =1 analogue of the dualisation of AdS ×S5 to Gaiotto–Maldacena-like geometries that 5 wasperformedin[10].Indeed,onecanobtaintheKWtheorybyconsideringtheN =2gauge theorydualtotheorbifold AdS ×S5/Z addingarelevantdeformationandflowingtotheIR. 5 2 WeessentiallyfindaT-dualcomplementofthisrelation. For the dualisation of the KT solution one finds that the resultant geometry is a solution of massiveIIAsupergravityandtheRomansmassisnaturallyquantisedbythenumberoffractional branes. The reason for this can be understood intuitively by the fact that there is a component of the RR three-form with legs along all the SU(2) directions. Upon dualisation,this then gets converted to a zero-form. Since this is a solution of massive IIA it has no lift to M-theory; the fractionalbranesofthetype-IIBsolutionrepresentsomeobstructiontothis. To get a better handle on this novel background we perform a number of checks. The first is to look at the central charge before and after the dualisation, following the method of [30] and [31]. We find that, up to a subtlety that depends on the global properties of the geometry, thecentralchargebeforeandafterthenon-Abelianduality,matches.Aswewillexplain,thiscan √ be understood by the fact that the measure, ge−2φ, is an invariant of the duality (just as it is for Abelian T-duality). The same invariance is present for the entanglement entropy. By using probe branes one can define a gauge coupling. A strange feature is that this suitably defined gaugecouplingdoesnotbehavelikethoseofarenormalisable4dQFTwhereg−2∼lnr (asin theKTcase),insteadgoinglikeg−2∼(lnr)3/2 whichhintsataratherunusualdualfieldtheory (eitherthat,orthecouplingsodefineddoesnotrepresenttheusualgaugeinteractions).Finally one can consider the Page and Maxwell charges after duality. Essentially what was D3-brane charge becomes D6-brane charge. The Maxwell charge of D6-branes changes logarithmically. As we will discuss, this is one among other similarities with the KS-cascade. We will discuss below,aformofSeibergdualitythatappearsaftertheduality. Toprobethelowenergyphysics,oneneedstolookatthedualoftheKSgeometry.Inthiscase thingsarerathermoreinvolved,butweverifythattheIRsignaturesofconfinementanddomain wallsarepreservedafterthedualisation.Thesamepatternshows-upifwestartwiththesolution describingD5-braneswrappingSUSYtwo-cycles[33]anddualiseit. Interestingly,forthetype-IIBsolutiondescribingthebaryonicbranchoftheKSfieldtheory, something qualitatively different happens. After the dualisation, we find that the large radius asymptoticsofthemetricisnolonger(logarithmically)approachingAdS .Weprovidetwosug- 5 gestionsastothefieldtheoreticinterpretationofthis;eitherthisisduetopresenceofanirrelevant operatorinthedualQFTormoreconservativelythatthistheoryceasestohaveabaryonicbranch. Letuspresentnowa“roadmap”thatsummarisesthepointsaboveandlayoutthegeneralidea behindthislongandtechnicalpaper.SeeFig.1. 1.1. Generalideaandroadmap Westartwith AdS ×S5 orbetteryet,with AdS ×S5/Z ,with N unitsoffluxofthefive- 5 5 2 form. The field theories associated are N =4 SYM or theN =2 version of the two groups quiver SU(N)×SU(N) and adjoint matter. Following the paper [10] we can perform a non- AbelianT-dualityonthegeometrytoobtainatype-IIA/M-theorygeometryoftheformproposed byGaiottoandMaldacena[11]withthefollowingcharacteristics(see[10]fordetails): • ItcontainsafactorofS2 insteadofahyperbolicplaneH2. • Theresultinggeometryissingular.Thedilatonfielddivergesatagivenangularposition. 4 G.Itsiosetal./NuclearPhysicsB873(2013)1–64 Fig.1.Aroadmapforthepaper. • Incorrespondencewiththepreviouspoint,the‘chargedistribution’inthelanguageof[11] isλ(η)=η,whichimpliesaquiveroftheform SU(2)×SU(3)×SU(4)×···×SU(N)×SU(N+1)×···. (1.1) A natural first step taken in this paper, is to apply the non-Abelian T-duality to examples pre- serving N =1 SUSY.We choosethe Klebanov–Wittengeometry[19]whose dualfieldtheory isthemassdeformationofthe N =2 fieldtheorydescribedabove.Thenon-Abeliandualityis performedinSection3.Someinterestingthingsare:thatthesolutionisnon-singular,preserves N =1andfallswithintheclassofgeometriesproposedin[29,26,27](originallyfoundin[32]). These geometries have been proposed to be dual to the mass deformation of the Maldacena– Gaiotto theories. Our geometry presented in Section 3 falls within this class, for the case in whichwehaveanS2 factorinsteadofanH .Thedualfieldtheoryseemstobelessunderstood 2 inthatcase. ThefollowingstepistocontinuewiththeknowndeformationsoftheKlebanov–Wittenthe- ory/geometry. We then study the case of the Klebanov–Tseytlin geometry, Klebanov–Strassler geometry, baryonic branch and the background of D5-branes wrapping a two-cycle inside the resolvedconifold.WeobtaininthiscasenewbackgroundsinmassiveIIAwithaquantizedmass parameter,proportionaltothenumberoffivebranesN ,the‘deformation’fromtheconformal c point. We present arguments for the non-singular behaviour of these new solutions (the trans- formed of the KT-solution is obviously singular as the seed solution is) and ‘define’ their field theorydualcalculatingobservableswiththebackground. Inmoredetail,thestructureofthepaperisthefollowing:InSection2wedevelopthetechnol- ogyrequiredtoimplementthesenon-Abeliandualitytransformations.InSection3weapplythis totheKWbackground.InSections4,5and6,weturnourattentiontothedualisationsandfield theory analysis of the non-conformalbackgroundsdescribedabove.We concludein Section7, presentingsomeopenquestionsandfuturetopicsforresearch.Weprovidegenerousappendices describingourconventionsandgenericBuscher-likerulesfordualisation. G.Itsiosetal./NuclearPhysicsB873(2013)1–64 5 2. Non-AbelianT-dualitytechnology In this section we give details of the dualisation procedure used. The hurried reader who simplywantstogetthephysicalresultsshouldfeelfreetoreadthefollowing“Non-AbelianT- duality101”andskippasttherestofthesectionreturningwhenhewishestoknowmoreofthe technicalities. 2.1. Non-AbelianT-duality101 T-dualitystatesequivalencebetweenstringtheoriespropagatingontwodifferenttargetspace– times containing some Abelian isometries. In its simplest form, it is the equivalence between strings on circle of radius R with those on a circle radius 1/R. More generally T-duality pro- vides a map, known as the Buscher rules, between one solution of supergravity and a second solution.Apowerfulapproachtoderivingtheserulesisthepathintegralapproach(orBuscher procedure)[34].Thisprocedureisathreesteprecipe:onebeginswiththestringsigmamodelfor the first space–time and gauges a U(1) isometry of this space–time; second, one invokes a flat connectionforthisgaugefieldbymeansofaLagrangemultiplier;finally,oneintegratesbyparts toyieldanactionwithanon-propagatinggaugefieldthatcanbeeliminatedbyitsequationsof motiontoproducetheT-dualsigmamodel. The Buscher procedure can be naturally generalised to the case of a target space equipped with a non-Abelian isometry group G. One follows exactly the same steps but in this case the gaugefields are valuedin the algebraof G. Doingso producesa mapbetweenone solutionof supergravity and another. It is in this spirit of solution generating that we employ non-Abelian T-dualityinthispaper. DespitethefactthatthedualisationprocedureisrathersimilarbetweentheAbelianandnon- Abelian cases there are some important differences. Generically the isometry (and potentially supersymmetry)enjoyedbythestartinggeometryis,atleastpartially,destroyed.Howeverthis lostisometrymayberecoveredasanon-localsymmetryinthesigmamodelandthecorrespond- ingsigmamodelsarecanonicallyequivalent.Asecondpointistherathersubtleeffectofglobal issues that arise when performing the Buscher procedure on worldsheets of arbitrary genera. These global concerns mean one should not view non-Abelian duality as a full symmetry of string (genus) perturbationtheorybutjust atree-levelsymmetry.Nonetheless,if one’sfocus is onsupergravity(asitwillbeinthispaper)ortheplanarlimitthenonemaystillharnessitspower asasolutiongeneratingsymmetry. Early work on non-Abelian duality can be found in [35–41] in context of purely Neveu– Schwarzbackgrounds.Thissubjecthashadsomethingofarevivalfollowingtheworkof[10],in whichthisprocedurewasextendedtogeometriescontainRRfluxes.Aparticularlycuriousresult camefromperforminganon-AbeliandualisationofanSU(2)isometrygroupthatactswithinthe sphereofAdS ×S5.AfterdualisationtheresultantgeometrywasasolutionofIIAwhoseliftto 5 M-theory bore a very close resemblance to the Giaotto–Maldacena geometries that come from consideringM5-braneswrappedonRiemannsurfaces. Weclosethissectionbygivinganexampletogetthereaderinthespirit.Considertheround metriconthe S3 whichpossesses SO(4)=SU(2) ×SU(2) isometryandmaybewritten(in L R Eulerangles)as ds2=dθ2+dφ2+2cosθdφdψ+dψ2. (2.1) 6 G.Itsiosetal./NuclearPhysicsB873(2013)1–64 AfterperformingthedualisationwithrespecttosaytheSU(2) isometryonefindsageometry L thatinterpolatesbetweenR×S2 andR3 withmetricgivenby d(cid:2)s2=dr2+ r2 (cid:3)dθ2+sin2θdφ2(cid:4). (2.2) 1+r2 Inaddition,inthisexamplethedualgeometryissupportedbyanNStwo-formanddilatongiven by B(cid:2)= r3 vol(cid:3)S2(cid:4), Φ(cid:2)=−1ln(cid:3)1+r2(cid:4). (2.3) 1+r2 2 Thisexampleservestoillustratesatwokeyfeaturesthatwewillencounter.FirstlytheSO(4)= SU(2) ×SU(2) isometrygetsreducedtojustSU(2)thatisreflectedbythepresenceoftheS2 L R inthedual.Secondlytherehasbeenaserioustopologychange,indeedthedualgeometrycontains a non-compact direction. Whilst this example does not represent, evidently, a full solution of supergravity on its own, it may be embedded into true supergravity solutions and indeed it is prototypicalofthedualisationsthatwewillperform. AnimportantingredientinthispaperwillbetheincorporationofRRfields.Letusillustrate howthisworksbysupposingthatintheexampleabovetheinitialgeometryissupportedbyan RRthree-form (cid:3) (cid:4) F =vol S3 . (2.4) 3 Toextractthedualfluxesonemayusethefollowingformula, eΦ(cid:2)F(cid:2)/ =F/.Ω−1, (2.5) wheretheslashesindicatetheRRpolyform(sumofRRforms)contractedwithgammamatrices to form a bispinor, i.e.F/ =Γ123, and Ω is a matrix, the construction of which we describe in detailinthefollowingsection,givenbyinthiscase (cid:3) (cid:4) 1 Ω−1= √ −Γ123+rΓr . (2.6) 1+r2 Fromthisoneascertainsthatthedualgeometrywillcontainazero-formandtwo-form: r3 (cid:3) (cid:4) F =1, F = vol S2 . (2.7) 0 2 1+r2 Notice that this would, when embedded into a true type-II supergravity background, lead to a solution in massive type-IIA (the F is the Romans mass and comes when the Γ123 in Ω 0 annihilate the same factor inF/ ). We shall see the same phenomenon happens in a number of 3 the examples in this paper. The fact that the type of the supergravity changed from IIB to IIA is due to the fact that the isometry group dualised had an odd dimension (if it were to be even dimensionalthetypewouldhaveremainedthesame). We now present details of how to technically compute the dualisation rules for the non- Abelianduality. 2.2. Non-AbelianT-duality;somenutsandbolts WewishtoconsiderbackgroundsthatsupportanSU(2)isometrysuchthatthemetriccanbe castas G.Itsiosetal./NuclearPhysicsB873(2013)1–64 7 ds2=G (x)dxμdxν+2G (x)dxμLi+g (x)LiLj, (2.8) μν μi ij where μ=1,2,...,7 and Li are the Maurer–Cartan forms. Our group theory conventionscan befoundinAppendixA.TheNSsectorcomprisesalsothe2-form 1 B=B (x)dxμ∧dxν+B (x)dxμ∧Li+ b (x)Li∧Lj (2.9) μν μi ij 2 andadilaton Φ=Φ(x). (2.10) Hence,allcoordinatedependenceontheSU(2)Euleranglesθ,φ,ψ iscontainedintheMaurer– Cartan one-forms whilst the remaining data can all be dependent on the spectator fields xμ. Notice that we could have taken b =0,1 however, we will not do that since in the specific ij exampleswewillencounteritisnecessaryforaclearpresentationofthevariousresults. Inwhatfollowsitwillbeconvenienttouseaparametrisationoftheframefieldsgivenby eA=eAdxμ, ea=κa Lj +λa dxμ, (2.12) μ j μ whereA=1,2,...,7anda=1,2,3.Bydemandingthat ds2=η eAeB+eaea, (2.13) AB weobtainthat λaλa=K , η eAeB =G −K , μ ν μν AB μ ν μν μν κa κa =g , κa λa =G , (2.14) i j ij i μ μi whereη istheseven-dimensionalMinkowskimetric.Notethatκa andλa dependingeneral AB i μ onthexμ’s. 2.2.1. Thenon-AbelianT-dualoftheNS-sector The corresponding Lagrangian density for the NS sector metric and antisymmetric fields is givenby L0=Qμν∂+Xμ∂−Xν+Qμi∂+XμLi−+QiμLi+∂−Xμ+EijLi+Lj−, (2.15) where,inaccordancewith(A.4),Li±=−iTr(tig−1∂±g)andwehavealsodefined Q =G +B , Q =G +B , μν μν μν μi μi μi Q =G +B , E =g +b . (2.16) iμ iμ iμ ij ij ij Toperformthenon-AbelianT-dualitywereplacederivativeswithcovariantderivativesaccording to 1 Toseethatnotethatin(2.9)therelevanttermbecomes √ BμidXμ∧Li+(cid:14)ijkbkLi∧Lj=BμidXμ∧Li+ 2bidLi √ √ (cid:3) (cid:4) =(Bμi− 2∂μbi)dXμ∧Li+ 2d biLi , (2.11) whereinthesecondlinewehaveperformedapartialintegration.Hence,thelasttermhasnocontributiontothefield strengthdBandwemayaswelldenotethefirsttermbyBμidXμ∧Li. 8 G.Itsiosetal./NuclearPhysicsB873(2013)1–64 ∂±g→D±g=∂±g−A±g, (2.17) andaddtheLagrangemultiplierterm −iTr(vF±), F±=∂+A−−∂−A+−[A+,A−]. (2.18) Thenthetotalactionisinvariantunder g→h−1g, v→h−1vh, A±→h−1A±h−h−1∂±h, (2.19) foragroupelementh(σ+,σ−)∈SU(2).Underthistransformationthefieldsxμ stayinertand thusarecalledspectators.AftersomepartialintegrationstheLagrangemultipliertermtakesthe form Tr(i∂+vA−−i∂−vA+−A+fA−), fij =fijkvk. (2.20) We now can integrate out the gauge fields to produce a dual theory that still depends on θ,φ,ψ,v and the spectators. One must now gauge fix the SU(2) isometry to remove three of i thesevariables.Theobviouswaytoproceedistoset g=I, (2.21) i.e.θ =φ=ψ =0inthenotationofAppendixA,whichleavesanactionintermsofjustthev i andthespectators.Thereareothergaugefixingchoicesthatmaybemorerevealingby,forin- stance,makingmanifestsomeresidualisometries.Differentgaugefixingchoicesmayberelated, atleastlocally,throughcoordinatetransformationsas willdemonstratebelowinSection2.2.3. For the time being we proceed with the gauge fixing choice g =I. Integrating out the gauge fieldsgives (cid:3) (cid:4) (cid:3) (cid:4) Ai+=iMj−i1 ∂+vj +Qμj∂+Xμ , Ai−=−iMi−j1 ∂−vj −Qjμ∂−Xμ , (2.22) wherewehavedefinedthematrix M=E+f. (2.23) SubstitutingbackintotheactiongivesthedualLagrangian (cid:3) (cid:4) (cid:3) (cid:4) L(cid:2)=Qμν∂+Xμ∂−Xν+ ∂+vi+∂+XμQμi Mi−j1 ∂−vj −Qjμ∂−Xμ . (2.24) FromthiswereadoffthebackgroundfieldsoftheNS-sectorfortheT-dualtheoryas Q(cid:2) =Q −Q M−1Q , E(cid:2) =M−1, μν μν μi ij jν ij ij Q(cid:2) =Q M−1, Q(cid:2) =−M−1Q . (2.25) μi μj ji iμ ij jμ Additionally one finds that the dilaton receives a contribution at the quantum level just as in Abelianduality Φ(cid:2)(x,v)=Φ(x)− 1ln(detM). (2.26) 2 It is clear from the above that the inverse of the matrix M determines the dual geometry. Since we are working with SU(2) isometries it is simple enough to evaluate this explicitly. In three-dimensionsanantisymmetricmatrixisdualtoavector,hencewemaywrite b =(cid:14) b . (2.27) ij ijk k G.Itsiosetal./NuclearPhysicsB873(2013)1–64 9 √ Rescalingalsov →v / 2wehavetoinvertthematrixwithelements i i M =g +(cid:14) y , y =b +v . (2.28) ij ij ijk k i i i Tocomputetheinversedefineanantisymmetricdensityandavectoras (cid:5) yi yi e¯ = detg(cid:14) , zi = √ = . (2.29) ijk ijk detg detκ Inthiswaywemayusethematrix g tolowerandraiseindicesin zi sincenowtheindexhas ij beentransformedintoacurvedindex.Then M =g +(cid:14)¯ zk. (2.30) ij ij ijk Thentheinverseisfoundtobe (cid:3) (cid:4) (cid:3) (cid:4) 1 M−1 ij = gij +zizj −(cid:14)¯ij zk , z2=zizjg =ziz . (2.31) 1+z2 k ij i Returningtoouroriginalvariables (cid:3) (cid:4) (cid:3) (cid:4) 1 M−1 ij = detggij +yiyj −(cid:14) y¯ , (2.32) detg+y2 ijk k wherey¯ =g yj andy2=yiyjg =y¯ y¯ gij. i ij ij i j 2.2.2. ComputingtheLorentztransformation Bymakinguseof(2.22)onecanestablishthattheworldsheetderivativestransformunderthe non-AbelianT-dualityas (cid:3) (cid:4) (cid:3) (cid:4) Li+=− M−1 ji ∂+vj +Qμj∂+Xμ , (cid:3) (cid:4) Li−=Mi−j1 ∂−vj −Qjμ∂−Xμ , ∂±Xμ=invariant. (2.33) These relations, in fact, provide a canonical transformation in phase space between pairs of T- dualsigmamodels[37,40]. Crucialtouswillbethatbyvirtueof(2.33),leftandrightmovershavedifferenttransforma- tionrulesandwilldefinetwodifferentsetsofframefields.However,sincetheseframefieldswill describethesamegeometrytheymustberelatedbyaLorentztransformation.Explicitlywefind thattheframesin(2.12)transforms,usingthe“plus”andthe“minus”transformations(2.33),to theframes (cid:3) (cid:4) e→eˆ+=−κM−T dv+QT dX +λdX, e→eˆ−=κM−1(dv−QdX)+λdX, (2.34) where(Q) =Q .Writing iμ iμ eˆ+=Λeˆ−, (2.35) whereΛistheLorentztransformationmatrixtobecomputed.Wefindfromequatingtheterms proportionaltodvin(2.34)that Λ=−κM−TMκ−1=−κ−TMM−TκT. (2.36) 10 G.Itsiosetal./NuclearPhysicsB873(2013)1–64 ThetermsproportionaltodX equateidenticallywithnoextracondition.Toexplicitlycompute Λnotefirstthat (cid:3) (cid:4) κ−TMκ−1 =δ +(cid:14) ζc, (2.37) ab ab abc where ζa=κa zi, (2.38) i istheflatindexcoordinate.Then (cid:3) (cid:4) (cid:3) (cid:4) 1 κM−1κT ab= δab+ζaζb−(cid:14) ζc . (2.39) 1+ζ2 abc Thenwecomputethat ζ2−1 2 (cid:3) (cid:4) Λab= δ − ζaζb+(cid:14) ζc , (2.40) ζ2+1 ab ζ2+1 abc where ζ2=ζ ζa. Notethatthishasexactlythesameformas in[10]forthecaseofthePCM. a Moreover,itisanO(3)rotationasithasdetΛ=−1.Theeffectofthenon-trivialextracouplings g and b is to “dress up” the original Lagrange multipliers and is hidden into the definition ij ij ofζa. ThisLorentztransformationalsoinducesanactiononspinorsgivenbyamatrixΩ obtained byrequiringthat Ω−1ΓaΩ=Λa Γb. (2.41) b Onefindsthat2 −Γ +ζ Γa Ω=Γ (cid:5)123 a , (2.42) 11 1+ζ2 where Γ istheproductofalltenGammamatrices,thatanticommuteswitheachoneofthem 11 andforMinkowskispace–time,itsquarestounity.NotealsothatΩ leavesinvarianttheGamma matricesΓA correspondingtotheseven-dimensionalspectatorspace–timeanditisofthesame formasthecorrespondingmatrixin[10]. 2.2.3. Generalgaugefixingandcoordinatetransformations As noted above, gauge choices different than (2.21) might be more convenient in certain applications. To expound this point let us consider a more general situation where the target admitsanisometrygroupGandwedualisewithrespecttoasubgroupH (forthecaseathand wedualisethefullSU(2)isometryandsodimG=dimH =3).Specificgaugechoicesamong the original dimG+dimH variables are of the form f (g,v)=0, i =1,2,...,dim(H). This i leavesdimGvariablesfortheT-dualmodel.Nevertheless,onemayshowthatthedifferentgauge choices are related by coordinate transformations. This can be done by defining the “dressed” Lagrangemultipliersas vˆ =D vj, (2.43) i ji 2 ThegeneralexpressionforΩforafreelyactinggroupGcanbefoundin[14].

Description:
(dv − QdX) + λdX,. (2.34) where (Q)iμ = Qiμ. Writing. ˆe+ = Λˆe−,. (2.35) where Λ is the Lorentz transformation matrix to be computed. We find from equating the terms proportional [24] E. Caceres, C. Nunez, L.A. Pando-Zayas, Heating up the baryonic branch with U-duality: A unified pictu
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.