ebook img

Non-abelian quadratic Poisson brackets - From noncommutative PDF

63 Pages·2011·0.3 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Non-abelian quadratic Poisson brackets - From noncommutative

Introduction IntegrableSystems Non-AbelianPoissonBrackets Algebraiccharacterization Summary Non-abelian quadratic Poisson brackets From noncommutative ODE to noncommutative Algebraic Geometry and back A. Odesskii1 V. Rubtsov2 V. Sokolov3 1DepartmentofMathematics,UniversityofBrock,Canada 2DepartmentofMathematics,UniversityofAngersandTheoryDivisionofITEP 3LandauInstituteofTheoreticalPhysics,RAS,Moscow 14.06 2011, Figueira da Foz, " Poisson Geometry and Applications" A.Odesskii,V.Rubtsov,V.Sokolov Non-abelianquadraticPoissonbrackets Introduction IntegrableSystems Non-AbelianPoissonBrackets Algebraiccharacterization Summary Outline 1 Introduction Motivations and origins 2 Integrable Systems 3 Non-Abelian Poisson Brackets "Tensor" interpretations 4 Algebraic characterization 5 Summary A.Odesskii,V.Rubtsov,V.Sokolov Non-abelianquadraticPoissonbrackets Introduction IntegrableSystems Non-AbelianPoissonBrackets Motivationsandorigins Algebraiccharacterization Summary Outline 1 Introduction Motivations and origins 2 Integrable Systems 3 Non-Abelian Poisson Brackets "Tensor" interpretations 4 Algebraic characterization 5 Summary A.Odesskii,V.Rubtsov,V.Sokolov Non-abelianquadraticPoissonbrackets Introduction IntegrableSystems Non-AbelianPoissonBrackets Motivationsandorigins Algebraiccharacterization Summary Main sources of inspiration Integrable Systems MatrixIntegrablesystemsgeneralizedManakov’s BihamiltonianpropertyandMagri-Lenardschemes Noncommutative algebraic Poisson geometry KontsevichNCsymplecticgeometry LeBryunNC@geomerty "Double"PoissonstrucruresandAYBE A.Odesskii,V.Rubtsov,V.Sokolov Non-abelianquadraticPoissonbrackets Introduction IntegrableSystems Non-AbelianPoissonBrackets Algebraiccharacterization Summary Generalized Manakov’s system We consider ODE systems of the form dx α = F (x), x = (x ,...,x ), (1) α 1 N dt Herex arem×m -matricesandF are(non-commutative) i α polynomials. There exist systems (1) integrable for any m. The system u = u2v −vu2, v = 0 (2) t t is integrable by the Inverse Scattering Method for any size m of matrices u and v. If u - such that uT = −u, and v - a constant diagonal matrix, then (2) is equivalent to the m-dimensional Euler top. This is the famous S.V. Manakov model (1976). A.Odesskii,V.Rubtsov,V.Sokolov Non-abelianquadraticPoissonbrackets Introduction IntegrableSystems Non-AbelianPoissonBrackets Algebraiccharacterization Summary Generalized Manakov’s system We consider ODE systems of the form dx α = F (x), x = (x ,...,x ), (1) α 1 N dt Herex arem×m -matricesandF are(non-commutative) i α polynomials. There exist systems (1) integrable for any m. The system u = u2v −vu2, v = 0 (2) t t is integrable by the Inverse Scattering Method for any size m of matrices u and v. If u - such that uT = −u, and v - a constant diagonal matrix, then (2) is equivalent to the m-dimensional Euler top. This is the famous S.V. Manakov model (1976). A.Odesskii,V.Rubtsov,V.Sokolov Non-abelianquadraticPoissonbrackets Introduction IntegrableSystems Non-AbelianPoissonBrackets Algebraiccharacterization Summary Generalized Manakov’s system We consider ODE systems of the form dx α = F (x), x = (x ,...,x ), (1) α 1 N dt Herex arem×m -matricesandF are(non-commutative) i α polynomials. There exist systems (1) integrable for any m. The system u = u2v −vu2, v = 0 (2) t t is integrable by the Inverse Scattering Method for any size m of matrices u and v. If u - such that uT = −u, and v - a constant diagonal matrix, then (2) is equivalent to the m-dimensional Euler top. This is the famous S.V. Manakov model (1976). A.Odesskii,V.Rubtsov,V.Sokolov Non-abelianquadraticPoissonbrackets Introduction IntegrableSystems Non-AbelianPoissonBrackets Algebraiccharacterization Summary Generalized Manakov’s system We consider ODE systems of the form dx α = F (x), x = (x ,...,x ), (1) α 1 N dt Herex arem×m -matricesandF are(non-commutative) i α polynomials. There exist systems (1) integrable for any m. The system u = u2v −vu2, v = 0 (2) t t is integrable by the Inverse Scattering Method for any size m of matrices u and v. If u - such that uT = −u, and v - a constant diagonal matrix, then (2) is equivalent to the m-dimensional Euler top. This is the famous S.V. Manakov model (1976). A.Odesskii,V.Rubtsov,V.Sokolov Non-abelianquadraticPoissonbrackets Introduction IntegrableSystems Non-AbelianPoissonBrackets Algebraiccharacterization Summary Bihamiltonian structures Aim - to construct an integrable generalization of (2) to the case of arbitrary N using the bi-Hamiltonian approach Definition Two Poisson brackets {·,·} and {·,·} are compatible if 1 2 {·,·} = {·,·} +λ{·,·} (3) λ 1 2 is a Poisson bracket for any λ. If the bracket (3) is degenerate then a hierarchy of integrable Hamiltonian ODE systems can be constructed via the following result: A.Odesskii,V.Rubtsov,V.Sokolov Non-abelianquadraticPoissonbrackets Introduction IntegrableSystems Non-AbelianPoissonBrackets Algebraiccharacterization Summary Bihamiltonian structures Aim - to construct an integrable generalization of (2) to the case of arbitrary N using the bi-Hamiltonian approach Definition Two Poisson brackets {·,·} and {·,·} are compatible if 1 2 {·,·} = {·,·} +λ{·,·} (3) λ 1 2 is a Poisson bracket for any λ. If the bracket (3) is degenerate then a hierarchy of integrable Hamiltonian ODE systems can be constructed via the following result: A.Odesskii,V.Rubtsov,V.Sokolov Non-abelianquadraticPoissonbrackets

Description:
Non-Abelian Poisson Brackets . Two Poisson brackets {·,·}1 and {·,·}2 are compatible if. {·,·}λ = {·,·}1 + λ{· Such brackets possess the following two properties:.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.